» Articles » PMID: 24704875

Experimental, Numerical, and Analytical Velocity Spectra in Turbulent Quantum Fluid

Overview
Specialty Science
Date 2014 Apr 8
PMID 24704875
Citations 6
Authors
Affiliations
Soon will be listed here.
Abstract

Turbulence in superfluid helium is unusual and presents a challenge to fluid dynamicists because it consists of two coupled, interpenetrating turbulent fluids: the first is inviscid with quantized vorticity, and the second is viscous with continuous vorticity. Despite this double nature, the observed spectra of the superfluid turbulent velocity at sufficiently large length scales are similar to those of ordinary turbulence. We present experimental, numerical, and theoretical results that explain these similarities, and illustrate the limits of our present understanding of superfluid turbulence at smaller scales.

Citing Articles

Theory of anisotropic superfluid He counterflow turbulence.

Lvov V, Lvov Y, Nazarenko S, Pomyalov A Philos Trans A Math Phys Eng Sci. 2022; 380(2219):20210094.

PMID: 35094563 PMC: 8802038. DOI: 10.1098/rsta.2021.0094.


Vortex clustering, polarisation and circulation intermittency in classical and quantum turbulence.

Polanco J, Muller N, Krstulovic G Nat Commun. 2021; 12(1):7090.

PMID: 34876584 PMC: 8651722. DOI: 10.1038/s41467-021-27382-6.


Knot spectrum of turbulence.

Cooper R, Mesgarnezhad M, Baggaley A, Barenghi C Sci Rep. 2019; 9(1):10545.

PMID: 31332254 PMC: 6646329. DOI: 10.1038/s41598-019-47103-w.


Crossover from interaction to driven regimes in quantum vortex reconnections.

Galantucci L, Baggaley A, Parker N, Barenghi C Proc Natl Acad Sci U S A. 2019; 116(25):12204-12211.

PMID: 31171660 PMC: 6589658. DOI: 10.1073/pnas.1818668116.


Regimes of turbulence without an energy cascade.

Barenghi C, Sergeev Y, Baggaley A Sci Rep. 2016; 6:35701.

PMID: 27761005 PMC: 5071764. DOI: 10.1038/srep35701.


References
1.
Kobayashi M, Tsubota M . Kolmogorov spectrum of superfluid turbulence: numerical analysis of the Gross-Pitaevskii equation with a small-scale dissipation. Phys Rev Lett. 2005; 94(6):065302. DOI: 10.1103/PhysRevLett.94.065302. View

2.
Svistunov . Superfluid turbulence in the low-temperature limit. Phys Rev B Condens Matter. 1995; 52(5):3647-3653. DOI: 10.1103/physrevb.52.3647. View

3.
Vitiello , Reatto , Chester , Kalos . Vortex line in superfluid 4He: A variational Monte Carlo calculation. Phys Rev B Condens Matter. 1996; 54(2):1205-1212. DOI: 10.1103/physrevb.54.1205. View

4.
Aarts , de Waele AT . Numerical investigation of the flow properties of He II. Phys Rev B Condens Matter. 1994; 50(14):10069-10079. DOI: 10.1103/physrevb.50.10069. View

5.
Kivotides D . Coherent structure formation in turbulent thermal superfluids. Phys Rev Lett. 2006; 96(17):175301. DOI: 10.1103/PhysRevLett.96.175301. View