» Articles » PMID: 24704748

Building a Secreting Nanomachine: a Structural Overview of the T3SS

Overview
Date 2014 Apr 8
PMID 24704748
Citations 30
Authors
Affiliations
Soon will be listed here.
Abstract

To fulfill complex biological tasks, such as locomotion and protein translocation, bacteria assemble macromolecular nanomachines. One such nanodevice, the type III secretion system (T3SS), has evolved to provide a means of transporting proteins from the bacterial cytoplasm across the periplasmic and extracellular spaces. T3SS can be broadly classified into two highly homologous families: the flagellar T3SS which drive cell motility, and the non-flagellar T3SS (NF-T3SS) that inject effector proteins into eukaryotic host cells, a trait frequently associated with virulence. Although the structures and symmetries of ancillary components of the T3SS have diversified to match requirements of different species adapted to different niches, recent genetic, molecular and structural studies demonstrate that these systems are built by arranging homologous modular protein assemblies.

Citing Articles

CRISPR/Cas9-generated mutations in a sugar transporter gene reduce cassava susceptibility to bacterial blight.

Elliott K, Veley K, Jensen G, Gilbert K, Norton J, Kambic L Plant Physiol. 2024; 195(4):2566-2578.

PMID: 38701041 PMC: 11288762. DOI: 10.1093/plphys/kiae243.


Twists and turns: 40 years of investigating how and why bacteria swim.

Armitage J Microbiology (Reading). 2024; 170(2).

PMID: 38363121 PMC: 10924463. DOI: 10.1099/mic.0.001432.


Targeting bacterial pathogenesis by inhibiting virulence-associated Type III and Type IV secretion systems.

Blasey N, Rehrmann D, Riebisch A, Muhlen S Front Cell Infect Microbiol. 2023; 12:1065561.

PMID: 36704108 PMC: 9872159. DOI: 10.3389/fcimb.2022.1065561.


A Highly Unstable and Elusive Plasmid That Encodes the Type III Secretion System Is Necessary for Full Virulence in the Marine Fish Pathogen subsp. .

Abushattal S, Vences A, Osorio C Int J Mol Sci. 2022; 23(9).

PMID: 35563122 PMC: 9105992. DOI: 10.3390/ijms23094729.


Delivering the pain: an overview of the type III secretion system with special consideration for aquatic pathogens.

Rahmatelahi H, El-Matbouli M, Menanteau-Ledouble S Vet Res. 2021; 52(1):146.

PMID: 34924019 PMC: 8684695. DOI: 10.1186/s13567-021-01015-8.


References
1.
Fadouloglou V, Tampakaki A, Glykos N, Bastaki M, Hadden J, Phillips S . Structure of HrcQB-C, a conserved component of the bacterial type III secretion systems. Proc Natl Acad Sci U S A. 2003; 101(1):70-5. PMC: 314140. DOI: 10.1073/pnas.0304579101. View

2.
Kowal J, Chami M, Ringler P, Muller S, Kudryashev M, Castano-Diez D . Structure of the dodecameric Yersinia enterocolitica secretin YscC and its trypsin-resistant core. Structure. 2013; 21(12):2152-61. DOI: 10.1016/j.str.2013.09.012. View

3.
Imada K, Minamino T, Tahara A, Namba K . Structural similarity between the flagellar type III ATPase FliI and F1-ATPase subunits. Proc Natl Acad Sci U S A. 2007; 104(2):485-90. PMC: 1766411. DOI: 10.1073/pnas.0608090104. View

4.
Zarivach R, Vuckovic M, Deng W, Finlay B, Strynadka N . Structural analysis of a prototypical ATPase from the type III secretion system. Nat Struct Mol Biol. 2007; 14(2):131-7. DOI: 10.1038/nsmb1196. View

5.
McDowell M, Johnson S, Deane J, Cheung M, Roehrich A, Blocker A . Structural and functional studies on the N-terminal domain of the Shigella type III secretion protein MxiG. J Biol Chem. 2011; 286(35):30606-30614. PMC: 3162421. DOI: 10.1074/jbc.M111.243865. View