» Articles » PMID: 24684013

Multinomial Probabilistic Fiber Representation for Connectivity Driven Clustering

Overview
Date 2014 Apr 2
PMID 24684013
Citations 5
Authors
Affiliations
Soon will be listed here.
Abstract

The clustering of fibers into bundles is an important task in studying the structure and function of white matter. Existing technology mostly relies on geometrical features, such as the shape of fibers, and thus only provides very limited information about the neuroanatomical function of the brain. We advance this issue by proposing a multinomial representation of fibers decoding their connectivity to gray matter regions. We then simplify the clustering task by first deriving a compact encoding of our representation via the logit transformation. Furthermore, we define a distance between fibers that is in theory invariant to parcellation biases and is equivalent to a family of Riemannian metrics on the simplex of multinomial probabilities. We apply our method to longitudinal scans of two healthy subjects showing high reproducibility of the resulting fiber bundles without needing to register the corresponding scans to a common coordinate system. We confirm these qualitative findings via a simple statistical analyse of the fiber bundles.

Citing Articles

Deep fiber clustering: Anatomically informed fiber clustering with self-supervised deep learning for fast and effective tractography parcellation.

Chen Y, Zhang C, Xue T, Song Y, Makris N, Rathi Y Neuroimage. 2023; 273:120086.

PMID: 37019346 PMC: 10958986. DOI: 10.1016/j.neuroimage.2023.120086.


An anatomically curated fiber clustering white matter atlas for consistent white matter tract parcellation across the lifespan.

Zhang F, Wu Y, Norton I, Rigolo L, Rathi Y, Makris N Neuroimage. 2018; 179:429-447.

PMID: 29920375 PMC: 6080311. DOI: 10.1016/j.neuroimage.2018.06.027.


Investigation into local white matter abnormality in emotional processing and sensorimotor areas using an automatically annotated fiber clustering in major depressive disorder.

Wu Y, Zhang F, Makris N, Ning Y, Norton I, She S Neuroimage. 2018; 181:16-29.

PMID: 29890329 PMC: 6415925. DOI: 10.1016/j.neuroimage.2018.06.019.


Individualized Map of White Matter Pathways: Connectivity-Based Paradigm for Neurosurgical Planning.

Tunc B, Ingalhalikar M, Parker D, Lecoeur J, Singh N, Wolf R Neurosurgery. 2015; 79(4):568-77.

PMID: 26678299 PMC: 4911597. DOI: 10.1227/NEU.0000000000001183.


Automated tract extraction via atlas based Adaptive Clustering.

Tunc B, Parker W, Ingalhalikar M, Verma R Neuroimage. 2014; 102 Pt 2:596-607.

PMID: 25134977 PMC: 4252913. DOI: 10.1016/j.neuroimage.2014.08.021.

References
1.
Gerig G, Gouttard S, Corouge I . Analysis of brain white matter via fiber tract modeling. Conf Proc IEEE Eng Med Biol Soc. 2007; 2004:4421-4. DOI: 10.1109/IEMBS.2004.1404229. View

2.
Hagmann P, Kurant M, Gigandet X, Thiran P, Wedeen V, Meuli R . Mapping human whole-brain structural networks with diffusion MRI. PLoS One. 2007; 2(7):e597. PMC: 1895920. DOI: 10.1371/journal.pone.0000597. View

3.
ODonnell L, Wells 3rd W, Golby A, Westin C . Unbiased groupwise registration of white matter tractography. Med Image Comput Comput Assist Interv. 2013; 15(Pt 3):123-30. PMC: 3638882. DOI: 10.1007/978-3-642-33454-2_16. View

4.
Pohl K, Fisher J, Bouix S, Shenton M, McCarley R, Grimson W . Using the logarithm of odds to define a vector space on probabilistic atlases. Med Image Anal. 2007; 11(5):465-77. PMC: 2423493. DOI: 10.1016/j.media.2007.06.003. View

5.
Guevara P, Poupon C, Riviere D, Cointepas Y, Descoteaux M, Thirion B . Robust clustering of massive tractography datasets. Neuroimage. 2010; 54(3):1975-93. DOI: 10.1016/j.neuroimage.2010.10.028. View