» Articles » PMID: 24675706

Broadband Absorption Engineering of Hyperbolic Metafilm Patterns

Overview
Journal Sci Rep
Specialty Science
Date 2014 Mar 29
PMID 24675706
Citations 23
Authors
Affiliations
Soon will be listed here.
Abstract

Perfect absorbers are important optical/thermal components required by a variety of applications, including photon/thermal-harvesting, thermal energy recycling, and vacuum heat liberation. While there is great interest in achieving highly absorptive materials exhibiting large broadband absorption using optically thick, micro-structured materials, it is still challenging to realize ultra-compact subwavelength absorber for on-chip optical/thermal energy applications. Here we report the experimental realization of an on-chip broadband super absorber structure based on hyperbolic metamaterial waveguide taper array with strong and tunable absorption profile from near-infrared to mid-infrared spectral region. The ability to efficiently produce broadband, highly confined and localized optical fields on a chip is expected to create new regimes of optical/thermal physics, which holds promise for impacting a broad range of energy technologies ranging from photovoltaics, to thin-film thermal absorbers/emitters, to optical-chemical energy harvesting.

Citing Articles

Electromagnetically Induced Absorption Overcomes the Upper Limit of Light Absorption: Dipole-Dipole Coupling with Phase Retardation in Plasmonic-Dielectric Dimers.

Matsumori K, Fujimura R, Retsch M J Phys Chem C Nanomater Interfaces. 2023; 127(38):19127-19140.

PMID: 37791102 PMC: 10544032. DOI: 10.1021/acs.jpcc.3c03307.


Magnetic Mode Coupling in Hyperbolic Bowtie Meta-Antennas.

Ebrahimi S, Muravitskaya A, Adawi A, Baudrion A, Adam P, Bouillard J J Phys Chem Lett. 2023; 14(35):7824-7832.

PMID: 37624618 PMC: 10494229. DOI: 10.1021/acs.jpclett.3c01620.


Research on Design Method of Multilayer Metamaterials Based on Stochastic Topology.

Xi Z, Lu X, Shen T, Zou C, Chen L, Guo S Materials (Basel). 2023; 16(15).

PMID: 37569933 PMC: 10419964. DOI: 10.3390/ma16155229.


An ultra-compact blackbody using electrophoretic deposited carbon nanotube films.

Lin A, Yang C, Parashar P, Lin C, Jian D, Huang W RSC Adv. 2022; 8(7):3453-3461.

PMID: 35542922 PMC: 9077685. DOI: 10.1039/c7ra12113j.


Numerical study of a wide-angle polarization-independent ultra-broadband efficient selective metamaterial absorber for near-ideal solar thermal energy conversion.

Wu D, Liu C, Liu Y, Xu Z, Yu Z, Yu L RSC Adv. 2022; 8(38):21054-21064.

PMID: 35539953 PMC: 9080943. DOI: 10.1039/c8ra01524d.


References
1.
Hess O, Pendry J, Maier S, Oulton R, Hamm J, Tsakmakidis K . Active nanoplasmonic metamaterials. Nat Mater. 2012; 11(7):573-84. DOI: 10.1038/nmat3356. View

2.
Rephaeli E, Raman A, Fan S . Ultrabroadband photonic structures to achieve high-performance daytime radiative cooling. Nano Lett. 2013; 13(4):1457-61. DOI: 10.1021/nl4004283. View

3.
Logeeswaran Vj , Kobayashi N, Islam M, Wu W, Chaturvedi P, Fang N . Ultrasmooth silver thin films deposited with a germanium nucleation layer. Nano Lett. 2008; 9(1):178-82. DOI: 10.1021/nl8027476. View

4.
Chen W, Thoreson M, Ishii S, Kildishev A, Shalaev V . Ultra-thin ultra-smooth and low-loss silver films on a germanium wetting layer. Opt Express. 2010; 18(5):5124-34. DOI: 10.1364/OE.18.005124. View

5.
Liu X, Tyler T, Starr T, Starr A, Jokerst N, Padilla W . Taming the blackbody with infrared metamaterials as selective thermal emitters. Phys Rev Lett. 2011; 107(4):045901. DOI: 10.1103/PhysRevLett.107.045901. View