» Articles » PMID: 24671569

Modification of Glycolysis and Its Effect on the Production of L-threonine in Escherichia Coli

Overview
Specialty Biotechnology
Date 2014 Mar 28
PMID 24671569
Citations 9
Authors
Affiliations
Soon will be listed here.
Abstract

High concentrations of acetate, the main by-product of Escherichia coli (E. coli) high cell density culture, inhibit bacterial growth and L-threonine production. Since metabolic overflux causes acetate accumulation, we attempted to reduce acetate production by redirecting glycolysis flux to the pentose phosphate pathway by deleting the genes encoding phosphofructokinase (pfk) and/or pyruvate kinase (pyk) in an L-threonine-producing strain of E. coli, THRD. pykF, pykA, pfkA, and pfkB deletion mutants produced less acetate (9.44 ± 0.83, 3.86 ± 0.88, 0.30 ± 0.25, and 6.99 ± 0.85 g/l, respectively) than wild-type THRD cultures (19.75 ± 0.93 g/l). THRDΔpykF and THRDΔpykA produced 11.05 and 5.35 % more L-threonine, and achieved a 10.91 and 5.60 % higher yield on glucose, respectively. While THRDΔpfkA grew more slowly and produced less L-threonine than THRD, THRDΔpfkB produced levels of L-threonine (102.28 ± 2.80 g/l) and a yield on glucose (0.34 g/g) similar to that of THRD. The dual deletion mutant THRDΔpfkBΔpykF also achieved low acetate (7.42 ± 0.81 g/l) and high L-threonine yields (111.37 ± 2.71 g/l). The level of NADPH in THRDΔpfkA cultures was depressed, whereas all other mutants produced more NADPH than THRD did. These results demonstrated that modification of glycolysis in E. coli THRD reduced acetate production and increased accumulation of L-threonine.

Citing Articles

Metabolic Engineering of for the Production of l-Homoserine.

Sun Y, Wu J, Xu J, Yang L Chem Bio Eng. 2025; 1(3):223-230.

PMID: 39974203 PMC: 11835149. DOI: 10.1021/cbe.3c00077.


Recent Advances in Metabolic Engineering for the Biosynthesis of Phosphoenol Pyruvate-Oxaloacetate-Pyruvate-Derived Amino Acids.

Yin L, Zhou Y, Ding N, Fang Y Molecules. 2024; 29(12).

PMID: 38930958 PMC: 11206799. DOI: 10.3390/molecules29122893.


Microbial Secondary Metabolites via Fermentation Approaches for Dietary Supplementation Formulations.

Rusu A, Trif M, Rocha J Molecules. 2023; 28(16).

PMID: 37630272 PMC: 10458110. DOI: 10.3390/molecules28166020.


Expression regulation of multiple key genes to improve L-threonine in Escherichia coli.

Zhao L, Lu Y, Yang J, Fang Y, Zhu L, Ding Z Microb Cell Fact. 2020; 19(1):46.

PMID: 32093713 PMC: 7041290. DOI: 10.1186/s12934-020-01312-5.


Increasing L-threonine production in Escherichia coli by overexpressing the gene cluster phaCAB.

Wang J, Ma W, Fang Y, Yang J, Zhan J, Chen S J Ind Microbiol Biotechnol. 2019; 46(11):1557-1568.

PMID: 31312942 DOI: 10.1007/s10295-019-02215-0.


References
1.
Eiteman M, Altman E . Overcoming acetate in Escherichia coli recombinant protein fermentations. Trends Biotechnol. 2006; 24(11):530-6. DOI: 10.1016/j.tibtech.2006.09.001. View

2.
Aristidou A, San K, Bennett G . Improvement of biomass yield and recombinant gene expression in Escherichia coli by using fructose as the primary carbon source. Biotechnol Prog. 1999; 15(1):140-5. DOI: 10.1021/bp980115v. View

3.
Rodriguez-Prados J, de Atauri P, Maury J, Ortega F, Portais J, Chassagnole C . In silico strategy to rationally engineer metabolite production: A case study for threonine in Escherichia coli. Biotechnol Bioeng. 2009; 103(3):609-20. DOI: 10.1002/bit.22271. View

4.
Picon A, Teixeira de Mattos M, Postma P . Reducing the glucose uptake rate in Escherichia coli affects growth rate but not protein production. Biotechnol Bioeng. 2005; 90(2):191-200. DOI: 10.1002/bit.20387. View

5.
Fry B, Zhu T, Domach M, Koepsel R, Phalakornkule C, Ataai M . Characterization of growth and acid formation in a Bacillus subtilis pyruvate kinase mutant. Appl Environ Microbiol. 2000; 66(9):4045-9. PMC: 92257. DOI: 10.1128/AEM.66.9.4045-4049.2000. View