» Articles » PMID: 24659104

GOssTo: a Stand-alone Application and a Web Tool for Calculating Semantic Similarities on the Gene Ontology

Overview
Journal Bioinformatics
Specialty Biology
Date 2014 Mar 25
PMID 24659104
Citations 22
Authors
Affiliations
Soon will be listed here.
Abstract

Summary: We present GOssTo, the Gene Ontology semantic similarity Tool, a user-friendly software system for calculating semantic similarities between gene products according to the Gene Ontology. GOssTo is bundled with six semantic similarity measures, including both term- and graph-based measures, and has extension capabilities to allow the user to add new similarities. Importantly, for any measure, GOssTo can also calculate the Random Walk Contribution that has been shown to greatly improve the accuracy of similarity measures. GOssTo is very fast, easy to use, and it allows the calculation of similarities on a genomic scale in a few minutes on a regular desktop machine.

Contact: alberto@cs.rhul.ac.uk

Availability: GOssTo is available both as a stand-alone application running on GNU/Linux, Windows and MacOS from www.paccanarolab.org/gossto and as a web application from www.paccanarolab.org/gosstoweb. The stand-alone application features a simple and concise command line interface for easy integration into high-throughput data processing pipelines.

Citing Articles

simona: a comprehensive R package for semantic similarity analysis on bio-ontologies.

Gu Z BMC Genomics. 2024; 25(1):869.

PMID: 39285315 PMC: 11406866. DOI: 10.1186/s12864-024-10759-4.


LanDis: the disease landscape explorer.

Caniza H, Caceres J, Torres M, Paccanaro A Eur J Hum Genet. 2024; 32(4):461-465.

PMID: 38200084 PMC: 10999415. DOI: 10.1038/s41431-023-01511-9.


A Global Analysis of Alternative Splicing of Medicinal Plants, Ranunculales.

Hao D, Chen H, Xiao P, Jiang T Curr Genomics. 2023; 23(3):207-216.

PMID: 36777007 PMC: 9878827. DOI: 10.2174/1389202923666220527112929.


HESML: a real-time semantic measures library for the biomedical domain with a reproducible survey.

Lastra-Diaz J, Lara-Clares A, Garcia-Serrano A BMC Bioinformatics. 2022; 23(1):23.

PMID: 34991460 PMC: 8734250. DOI: 10.1186/s12859-021-04539-0.


Interpretation of cancer mutations using a multiscale map of protein systems.

Zheng F, Kelly M, Ramms D, Heintschel M, Tao K, Tutuncuoglu B Science. 2021; 374(6563):eabf3067.

PMID: 34591613 PMC: 9126298. DOI: 10.1126/science.abf3067.


References
1.
Ferreira J, Hastings J, Couto F . Exploiting disjointness axioms to improve semantic similarity measures. Bioinformatics. 2013; 29(21):2781-7. DOI: 10.1093/bioinformatics/btt491. View

2.
Ashburner M, Ball C, Blake J, Botstein D, Butler H, Cherry J . Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. Nat Genet. 2000; 25(1):25-9. PMC: 3037419. DOI: 10.1038/75556. View

3.
Du Z, Li L, Chen C, Yu P, Wang J . G-SESAME: web tools for GO-term-based gene similarity analysis and knowledge discovery. Nucleic Acids Res. 2009; 37(Web Server issue):W345-9. PMC: 2703883. DOI: 10.1093/nar/gkp463. View

4.
Mazandu G, Mulder N . Information content-based gene ontology semantic similarity approaches: toward a unified framework theory. Biomed Res Int. 2013; 2013:292063. PMC: 3775452. DOI: 10.1155/2013/292063. View

5.
Yang H, Nepusz T, Paccanaro A . Improving GO semantic similarity measures by exploring the ontology beneath the terms and modelling uncertainty. Bioinformatics. 2012; 28(10):1383-9. DOI: 10.1093/bioinformatics/bts129. View