» Articles » PMID: 24657723

The Influences of Parental Diet and Vitamin E Intake on the Embryonic Zebrafish Transcriptome

Overview
Publisher Elsevier
Specialties Biochemistry
Genetics
Date 2014 Mar 25
PMID 24657723
Citations 11
Authors
Affiliations
Soon will be listed here.
Abstract

The composition of the typical commercial diet fed to zebrafish can dramatically vary. By utilizing defined diets we sought to answer two questions: 1) How does the embryonic zebrafish transcriptome change when the parental adults are fed a commercial lab diet compared with a sufficient, defined diet (E+)? 2) Does a vitamin E-deficient parental diet (E-) further change the embryonic transcriptome? We conducted a global gene expression study using embryos from zebrafish fed a commercial (Lab), an E+ or an E- diet. To capture differentially expressed transcripts prior to onset of overt malformations observed in E- embryos at 48h post-fertilization (hpf), embryos were collected from each group at 36hpf. Lab embryos differentially expressed (p<0.01) 946 transcripts compared with the E+ embryos, and 2656 transcripts compared with the E- embryos. The differences in protein, fat and micronutrient intakes in zebrafish fed the Lab compared with the E+ diet demonstrate that despite overt morphologic consistency, significant differences in gene expression occurred. Moreover, functional analysis of the significant transcripts in the E- embryos suggested perturbed energy metabolism, leading to overt malformations and mortality. Thus, these findings demonstrate that parental zebrafish diet has a direct impact on the embryonic transcriptome.

Citing Articles

Vitamin E Deficiency Disrupts Gene Expression Networks during Zebrafish Development.

Head B, Ramsey S, Kioussi C, Tanguay R, Traber M Nutrients. 2021; 13(2).

PMID: 33573233 PMC: 7912379. DOI: 10.3390/nu13020468.


Good performance of turquoise killifish (Nothobranchius furzeri) on pelleted diet as a step towards husbandry standardization.

Zak J, Dykova I, Reichard M Sci Rep. 2020; 10(1):8986.

PMID: 32488062 PMC: 7265286. DOI: 10.1038/s41598-020-65930-0.


Current basis and future directions of zebrafish nutrigenomics.

Williams M, Watts S Genes Nutr. 2020; 14:34.

PMID: 31890052 PMC: 6935144. DOI: 10.1186/s12263-019-0658-2.


Influence of Commercial and Laboratory Diets on Growth, Body Composition, and Reproduction in the Zebrafish .

Fowler L, Williams M, Dennis-Cornelius L, Farmer S, Barry R, Powell M Zebrafish. 2019; 16(6):508-521.

PMID: 31381491 PMC: 6916735. DOI: 10.1089/zeb.2019.1742.


Characterizing sources of variability in zebrafish embryo screening protocols.

Hamm J, Ceger P, Allen D, Stout M, Maull E, Baker G ALTEX. 2018; 36(1):103-120.

PMID: 30415271 PMC: 10424490. DOI: 10.14573/altex.1804162.


References
1.
Jauniaux E, Cindrova-Davies T, Johns J, Dunster C, Hempstock J, Kelly F . Distribution and transfer pathways of antioxidant molecules inside the first trimester human gestational sac. J Clin Endocrinol Metab. 2004; 89(3):1452-8. DOI: 10.1210/jc.2003-031332. View

2.
Patton E, Zon L . The art and design of genetic screens: zebrafish. Nat Rev Genet. 2001; 2(12):956-66. DOI: 10.1038/35103567. View

3.
Davis L, Fox B, Lim C, Hiramatsu N, Sullivan C, Hirano T . Induction of vitellogenin production in male tilapia (Oreochromis mossambicus) by commercial fish diets. Comp Biochem Physiol A Mol Integr Physiol. 2009; 154(2):249-54. DOI: 10.1016/j.cbpa.2009.06.009. View

4.
Kimmel C, Ballard W, Kimmel S, Ullmann B, Schilling T . Stages of embryonic development of the zebrafish. Dev Dyn. 1995; 203(3):253-310. DOI: 10.1002/aja.1002030302. View

5.
Leese H, Sturmey R, Baumann C, McEvoy T . Embryo viability and metabolism: obeying the quiet rules. Hum Reprod. 2007; 22(12):3047-50. DOI: 10.1093/humrep/dem253. View