» Articles » PMID: 24647649

Modeling of the Dielectric Properties of Trabecular Bone Samples at Microwave Frequency

Overview
Publisher Springer
Date 2014 Mar 21
PMID 24647649
Citations 7
Authors
Affiliations
Soon will be listed here.
Abstract

In this paper, the dielectric properties of human trabecular bone are evaluated under physiological condition in the microwave range. Assuming a two components medium, simulation and experimental data are presented and discussed. A special experimental setup is developed in order to deal with inhomogeneous samples. Simulation data are obtained using finite difference time domain from a realistic sample. The bone mineral density of the samples are also measured. The simulation and experimental results of the present study suggest that there is a negative relation between bone volume fraction (BV/TV) and permittivity/conductivity: the higher the BV/TV, the lower the permittivity/conductivity. This is in agreement with the recently published in vivo data.

Citing Articles

Transmission-Based Vertebrae Strength Probe Development: Far Field Probe Property Extraction and Integrated Machine Vision Distance Validation Experiments.

Meaney P, Augustine R, Welteke A, Pfrommer B, Pearson A, Brisby H Sensors (Basel). 2023; 23(10).

PMID: 37430734 PMC: 10220895. DOI: 10.3390/s23104819.


A feasibility study on microwave imaging of bone for osteoporosis monitoring.

Amin B, Shahzad A, Crocco L, Wang M, OHalloran M, Gonzalez-Suarez A Med Biol Eng Comput. 2021; 59(4):925-936.

PMID: 33783696 DOI: 10.1007/s11517-021-02344-8.


3D printed PLA/copper bowtie antenna for biomedical imaging applications.

Avsar Aydin E, Torun A Phys Eng Sci Med. 2020; 43(4):1183-1193.

PMID: 32865721 DOI: 10.1007/s13246-020-00922-y.


Microwave tomography with phaseless data on the calcaneus by means of artificial neural networks.

Fajardo J, Lotto F, Vericat F, Carlevaro C, Irastorza R Med Biol Eng Comput. 2019; 58(2):433-442.

PMID: 31863248 DOI: 10.1007/s11517-019-02090-y.


Dielectric properties of bones for the monitoring of osteoporosis.

Amin B, Elahi M, Shahzad A, Porter E, McDermott B, OHalloran M Med Biol Eng Comput. 2018; 57(1):1-13.

PMID: 30159660 DOI: 10.1007/s11517-018-1887-z.


References
1.
Gabriel S, Lau R, Gabriel C . The dielectric properties of biological tissues: II. Measurements in the frequency range 10 Hz to 20 GHz. Phys Med Biol. 1996; 41(11):2251-69. DOI: 10.1088/0031-9155/41/11/002. View

2.
Bonifasi-Lista C, Cherkaev E . Electrical impedance spectroscopy as a potential tool for recovering bone porosity. Phys Med Biol. 2009; 54(10):3063-82. DOI: 10.1088/0031-9155/54/10/007. View

3.
Cherkaev E, Bonifasi-Lista C . Characterization of structure and properties of bone by spectral measure method. J Biomech. 2010; 44(2):345-51. DOI: 10.1016/j.jbiomech.2010.10.031. View

4.
Hildebrand T, Laib A, Muller R, Dequeker J, Ruegsegger P . Direct three-dimensional morphometric analysis of human cancellous bone: microstructural data from spine, femur, iliac crest, and calcaneus. J Bone Miner Res. 1999; 14(7):1167-74. DOI: 10.1359/jbmr.1999.14.7.1167. View

5.
Sierpowska J, Lammi M, Hakulinen M, Jurvelin J, Lappalainen R, Toyras J . Effect of human trabecular bone composition on its electrical properties. Med Eng Phys. 2006; 29(8):845-52. DOI: 10.1016/j.medengphy.2006.09.007. View