Eliodorio K, de Gois E Cunha G, de Oliveira Lino F, Sommer M, Gombert A, Giudici R
Sci Rep. 2023; 13(1):10567.
PMID: 37386049
PMC: 10310838.
DOI: 10.1038/s41598-023-37618-8.
Ribeiro R, Godinho C, Vitorino M, Robalo T, Fernandes F, Rodrigues M
J Fungi (Basel). 2022; 8(2).
PMID: 35205858
PMC: 8880318.
DOI: 10.3390/jof8020103.
Eliodorio K, de Gois E Cunha G, White B, Patel D, Zhang F, Hettema E
Appl Environ Microbiol. 2022; 88(5):e0206821.
PMID: 35044803
PMC: 8904057.
DOI: 10.1128/aem.02068-21.
Fernandez-Nino M, Rodriguez-Cubillos M, Herrera-Rocha F, Anzola J, Cepeda-Hernandez M, Aguirre Mejia J
Sci Rep. 2021; 11(1):8638.
PMID: 33883642
PMC: 8060343.
DOI: 10.1038/s41598-021-88048-3.
Stojiljkovic M, Foulquie-Moreno M, Thevelein J
Biotechnol Biofuels. 2020; 13:126.
PMID: 32695222
PMC: 7364526.
DOI: 10.1186/s13068-020-01761-5.
Repeated batches as a strategy for high 2G ethanol production from undetoxified hemicellulose hydrolysate using immobilized cells of recombinant in a fixed-bed reactor.
Milessi T, Perez C, Zangirolami T, Corradini F, Sandri J, Foulquie-Moreno M
Biotechnol Biofuels. 2020; 13:85.
PMID: 32426034
PMC: 7216711.
DOI: 10.1186/s13068-020-01722-y.
Saccharomyces cerevisiae strains for second-generation ethanol production: from academic exploration to industrial implementation.
Jansen M, Bracher J, Papapetridis I, Verhoeven M, de Bruijn H, de Waal P
FEMS Yeast Res. 2017; 17(5).
PMID: 28899031
PMC: 5812533.
DOI: 10.1093/femsyr/fox044.
Increased lignocellulosic inhibitor tolerance of cell populations in early stationary phase.
Narayanan V, Schelin J, Gorwa-Grauslund M, van Niel E, Carlquist M
Biotechnol Biofuels. 2017; 10:114.
PMID: 28484514
PMC: 5418707.
DOI: 10.1186/s13068-017-0794-0.
Metabolic engineering strategies for optimizing acetate reduction, ethanol yield and osmotolerance in S.
Papapetridis I, van Dijk M, van Maris A, Pronk J
Biotechnol Biofuels. 2017; 10:107.
PMID: 28450888
PMC: 5406903.
DOI: 10.1186/s13068-017-0791-3.
Improvement of yeast tolerance to acetic acid through Haa1 transcription factor engineering: towards the underlying mechanisms.
Swinnen S, Henriques S, Shrestha R, Ho P, Sa-Correia I, Nevoigt E
Microb Cell Fact. 2017; 16(1):7.
PMID: 28068993
PMC: 5220606.
DOI: 10.1186/s12934-016-0621-5.
Physiological responses to acid stress by Saccharomyces cerevisiae when applying high initial cell density.
Guo Z, Olsson L
FEMS Yeast Res. 2016; 16(7).
PMID: 27620460
PMC: 5094285.
DOI: 10.1093/femsyr/fow072.
A new laboratory evolution approach to select for constitutive acetic acid tolerance in Saccharomyces cerevisiae and identification of causal mutations.
Gonzalez-Ramos D, Gorter de Vries A, Grijseels S, van Berkum M, Swinnen S, van den Broek M
Biotechnol Biofuels. 2016; 9:173.
PMID: 27525042
PMC: 4983051.
DOI: 10.1186/s13068-016-0583-1.
Growth inhibition of S. cerevisiae, B. subtilis, and E. coli by lignocellulosic and fermentation products.
Pereira J, Verheijen P, Straathof A
Appl Microbiol Biotechnol. 2016; 100(21):9069-9080.
PMID: 27262569
PMC: 5056951.
DOI: 10.1007/s00253-016-7642-1.
Effects of Oxygen Availability on Acetic Acid Tolerance and Intracellular pH in Dekkera bruxellensis.
Capusoni C, Arioli S, Zambelli P, Moktaduzzaman M, Mora D, Compagno C
Appl Environ Microbiol. 2016; 82(15):4673-4681.
PMID: 27235432
PMC: 4984296.
DOI: 10.1128/AEM.00515-16.
Improving ethanol yield in acetate-reducing Saccharomyces cerevisiae by cofactor engineering of 6-phosphogluconate dehydrogenase and deletion of ALD6.
Papapetridis I, van Dijk M, Dobbe A, Metz B, Pronk J, van Maris A
Microb Cell Fact. 2016; 15:67.
PMID: 27118055
PMC: 5574463.
DOI: 10.1186/s12934-016-0465-z.
Improved Acetic Acid Resistance in Saccharomyces cerevisiae by Overexpression of the WHI2 Gene Identified through Inverse Metabolic Engineering.
Chen Y, Stabryla L, Wei N
Appl Environ Microbiol. 2016; 82(7):2156-2166.
PMID: 26826231
PMC: 4807505.
DOI: 10.1128/AEM.03718-15.
The Cytosolic pH of Individual Saccharomyces cerevisiae Cells Is a Key Factor in Acetic Acid Tolerance.
Fernandez-Nino M, Marquina M, Swinnen S, Rodriguez-Porrata B, Nevoigt E, Arino J
Appl Environ Microbiol. 2015; 81(22):7813-21.
PMID: 26341199
PMC: 4616936.
DOI: 10.1128/AEM.02313-15.
Metabolism of Multiple Aromatic Compounds in Corn Stover Hydrolysate by Rhodopseudomonas palustris.
Austin S, Kontur W, Ulbrich A, Oshlag J, Zhang W, Higbee A
Environ Sci Technol. 2015; 49(14):8914-22.
PMID: 26121369
PMC: 5031247.
DOI: 10.1021/acs.est.5b02062.
PEP3 overexpression shortens lag phase but does not alter growth rate in Saccharomyces cerevisiae exposed to acetic acid stress.
Ding J, Holzwarth G, Bradford C, Cooley B, Yoshinaga A, Patton-Vogt J
Appl Microbiol Biotechnol. 2015; 99(20):8667-80.
PMID: 26051671
PMC: 5497686.
DOI: 10.1007/s00253-015-6708-9.
Overexpression of acetyl-CoA synthetase in Saccharomyces cerevisiae increases acetic acid tolerance.
Ding J, Holzwarth G, Penner M, Patton-Vogt J, Bakalinsky A
FEMS Microbiol Lett. 2015; 362(3):1-7.
PMID: 25673654
PMC: 4809976.
DOI: 10.1093/femsle/fnu042.