» Articles » PMID: 24623761

Identification of a Pathway from the Retina to Koniocellular Layer K1 in the Lateral Geniculate Nucleus of Marmoset

Overview
Journal J Neurosci
Specialty Neurology
Date 2014 Mar 14
PMID 24623761
Citations 15
Authors
Affiliations
Soon will be listed here.
Abstract

Three well characterized pathways in primate vision (midget-parvocellular, parasol-magnocellular, bistratified-koniocellular) have been traced from the first synapse in the retina, through the visual thalamus (lateral geniculate nucleus, LGN), to the visual cortex. Here we identify a pathway from the first synapse in the retina to koniocellular layer K1 in marmoset monkeys (Callithrix jacchus). Particle-mediated gene transfer of an expression plasmid for the postsynaptic density 95-green fluorescent protein (PSD95-GFP) was used to label excitatory synapses on retinal ganglion cells and combined with immunofluorescence to identify the presynaptic bipolar cells. We found that axon terminals of one type of diffuse bipolar cell (DB6) provide dominant synaptic input to the dendrites of narrow thorny ganglion cells. Retrograde tracer injections into the LGN and photofilling of retinal ganglion cells showed that narrow thorny cells were preferentially labeled when koniocellular layer K1 was targeted. Layer K1 contains cells with high sensitivity for rapid movement, and layer K1 sends projections to association visual areas as well as to primary visual cortex. We hypothesize that the DB6-narrow thorny-koniocellular pathway contributes to residual visual functions ("blindsight") that survive injury to primary visual cortex in adult or early life.

Citing Articles

V1-bypassing thalamo-cortical visual circuits in blindsight and developmental dyslexia.

Rima S, Schmid M Curr Opin Physiol. 2024; 16:14-20.

PMID: 39649037 PMC: 7617028. DOI: 10.1016/j.cophys.2020.05.001.


Retinorecipient areas in the common marmoset (): An image-forming and non-image forming circuitry.

Santana N, Silva E, Santos S, Costa M, Nascimento Junior E, Engelberth R Front Neural Circuits. 2023; 17:1088686.

PMID: 36817647 PMC: 9932520. DOI: 10.3389/fncir.2023.1088686.


Retinal ganglion cells expressing CaM kinase II in human and nonhuman primates.

Baldicano A, Nasir-Ahmad S, Novelli M, Lee S, Do M, Martin P J Comp Neurol. 2022; 530(9):1470-1493.

PMID: 35029299 PMC: 9010361. DOI: 10.1002/cne.25292.


Satb1 expression in retinal ganglion cells of marmosets, macaques, and humans.

Nasir-Ahmad S, Vanstone K, Novelli M, Lee S, Do M, Martin P J Comp Neurol. 2021; 530(6):923-940.

PMID: 34622958 PMC: 8831458. DOI: 10.1002/cne.25258.


Retinal ganglion cells projecting to superior colliculus and pulvinar in marmoset.

Grunert U, Lee S, Kwan W, Mundinano I, Bourne J, Martin P Brain Struct Funct. 2021; 226(9):2745-2762.

PMID: 34021395 DOI: 10.1007/s00429-021-02295-8.


References
1.
Hendry S, Reid R . The koniocellular pathway in primate vision. Annu Rev Neurosci. 2000; 23:127-53. DOI: 10.1146/annurev.neuro.23.1.127. View

2.
Grunert U, Martin P . Rod bipolar cells in the macaque monkey retina: immunoreactivity and connectivity. J Neurosci. 1991; 11(9):2742-58. PMC: 6575238. View

3.
Cowey A . Visual system: how does blindsight arise?. Curr Biol. 2010; 20(17):R702-4. DOI: 10.1016/j.cub.2010.07.014. View

4.
Martin P, White A, Goodchild A, Wilder H, Sefton A . Evidence that blue-on cells are part of the third geniculocortical pathway in primates. Eur J Neurosci. 1997; 9(7):1536-41. DOI: 10.1111/j.1460-9568.1997.tb01509.x. View

5.
Calkins D, Schein S, Tsukamoto Y, Sterling P . M and L cones in macaque fovea connect to midget ganglion cells by different numbers of excitatory synapses. Nature. 1994; 371(6492):70-2. DOI: 10.1038/371070a0. View