» Articles » PMID: 24618085

Fibroblast Growth Factor Receptor Splice Variants Are Stable Markers of Oncogenic Transforming Growth Factor β1 Signaling in Metastatic Breast Cancers

Overview
Specialty Oncology
Date 2014 Mar 13
PMID 24618085
Citations 40
Authors
Affiliations
Soon will be listed here.
Abstract

Introduction: Epithelial-mesenchymal transition (EMT) and mesenchymal-epithelial transition (MET) facilitate breast cancer (BC) metastasis; however, stable molecular changes that result as a consequence of these processes remain poorly defined. Therefore, with the hope of targeting unique aspects of metastatic tumor outgrowth, we sought to identify molecular markers that could identify tumor cells that had completed the EMT:MET cycle.

Methods: An in vivo reporter system for epithelial cadherin (E-cad) expression was used to quantify its regulation in metastatic BC cells during primary and metastatic tumor growth. Exogenous addition of transforming growth factor β1 (TGF-β1) was used to induce EMT in an in situ model of BC. Microarray analysis was employed to examine gene expression changes in cells chronically treated with and withdrawn from TGF-β1, thus completing one full EMT:MET cycle. Changes in fibroblast growth factor receptor type 1 (FGFR1) isoform expression were validated using PCR analyses of patient-derived tumor tissues versus matched normal tissues. FGFR1 gene expression was manipulated using short hairpin RNA depletion and cDNA rescue. Preclinical pharmacological inhibition of FGFR kinase was employed using the orally available compound BGJ-398.

Results: Metastatic BC cells undergo spontaneous downregulation of E-cad during primary tumor growth, and its expression subsequently returns following initiation of metastatic outgrowth. Exogenous exposure to TGF-β1 was sufficient to drive the metastasis of an otherwise in situ model of BC and was similarly associated with a depletion and return of E-cad expression during metastatic progression. BC cells treated and withdrawn from TGF-β stably upregulate a truncated FGFR1-β splice variant that lacks the outermost extracellular immunoglobulin domain. Identification of this FGFR1 splice variant was verified in metastatic human BC cell lines and patient-derived tumor samples. Expression of FGFR1-β was also dominant in a model of metastatic outgrowth where depletion of FGFR1 and pharmacologic inhibition of FGFR kinase activity both inhibited pulmonary tumor outgrowth. Highlighting the dichotomous nature of FGFR splice variants and recombinant expression of full-length FGFR1-α also blocked pulmonary tumor outgrowth.

Conclusion: The results of our study strongly suggest that FGFR1-β is required for the pulmonary outgrowth of metastatic BC. Moreover, FGFR1 isoform expression can be used as a predictive biomarker for therapeutic application of its kinase inhibitors.

Citing Articles

Fatty Acid Synthase-Derived Lipid Stores Support Breast Cancer Metastasis.

Andolino C, Cotul E, Xianyu Z, Li Y, Bhat D, Ayers M Res Sq. 2024; .

PMID: 39678343 PMC: 11643320. DOI: 10.21203/rs.3.rs-5510550/v1.


Fibroblast growth receptor 1 is regulated by G-quadruplex in metastatic breast cancer.

Lin H, Safdar M, Washburn S, S Akhand S, Dickerhoff J, Ayers M Commun Biol. 2024; 7(1):963.

PMID: 39122837 PMC: 11316068. DOI: 10.1038/s42003-024-06602-x.


The highly metastatic 4T1 breast carcinoma model possesses features of a hybrid epithelial/mesenchymal phenotype.

Herndon M, Ayers M, Gibson-Corley K, Wendt M, Wallrath L, Henry M Dis Model Mech. 2024; 17(9).

PMID: 39104192 PMC: 11391819. DOI: 10.1242/dmm.050771.


FGFR1 Signaling Facilitates Obesity-Driven Pulmonary Outgrowth in Metastatic Breast Cancer.

Cotul E, Safdar M, Paez S, Kulkarni A, Ayers M, Lin H Mol Cancer Res. 2023; 22(3):254-267.

PMID: 38153436 PMC: 10923021. DOI: 10.1158/1541-7786.MCR-23-0955.


Unleashing the potential of combining FGFR inhibitor and immune checkpoint blockade for FGF/FGFR signaling in tumor microenvironment.

Ruan R, Li L, Li X, Huang C, Zhang Z, Zhong H Mol Cancer. 2023; 22(1):60.

PMID: 36966334 PMC: 10039534. DOI: 10.1186/s12943-023-01761-7.


References
1.
Rak J, McEachern D, Miller F . Sequential alteration of peanut agglutinin binding-glycoprotein expression during progression of murine mammary neoplasia. Br J Cancer. 1992; 65(5):641-8. PMC: 1977372. DOI: 10.1038/bjc.1992.138. View

2.
Sharpe R, Pearson A, Herrera-Abreu M, Johnson D, Mackay A, Welti J . FGFR signaling promotes the growth of triple-negative and basal-like breast cancer cell lines both in vitro and in vivo. Clin Cancer Res. 2011; 17(16):5275-86. PMC: 3432447. DOI: 10.1158/1078-0432.CCR-10-2727. View

3.
Pinto C, Widodo E, Waltham M, Thompson E . Breast cancer stem cells and epithelial mesenchymal plasticity - Implications for chemoresistance. Cancer Lett. 2013; 341(1):56-62. DOI: 10.1016/j.canlet.2013.06.003. View

4.
Luqmani Y, Mortimer C, Yiangou C, Johnston C, Bansal G, Sinnett D . Expression of 2 variant forms of fibroblast growth factor receptor 1 in human breast. Int J Cancer. 1995; 64(4):274-9. DOI: 10.1002/ijc.2910640411. View

5.
Dickler M, Cobleigh M, Miller K, Klein P, Winer E . Efficacy and safety of erlotinib in patients with locally advanced or metastatic breast cancer. Breast Cancer Res Treat. 2008; 115(1):115-21. DOI: 10.1007/s10549-008-0055-9. View