» Articles » PMID: 24616528

Thermal-safety Margins and the Necessity of Thermoregulatory Behavior Across Latitude and Elevation

Overview
Specialty Science
Date 2014 Mar 12
PMID 24616528
Citations 255
Authors
Affiliations
Soon will be listed here.
Abstract

Physiological thermal-tolerance limits of terrestrial ectotherms often exceed local air temperatures, implying a high degree of thermal safety (an excess of warm or cold thermal tolerance). However, air temperatures can be very different from the equilibrium body temperature of an individual ectotherm. Here, we compile thermal-tolerance limits of ectotherms across a wide range of latitudes and elevations and compare these thermal limits both to air and to operative body temperatures (theoretically equilibrated body temperatures) of small ectothermic animals during the warmest and coldest times of the year. We show that extreme operative body temperatures in exposed habitats match or exceed the physiological thermal limits of most ectotherms. Therefore, contrary to previous findings using air temperatures, most ectotherms do not have a physiological thermal-safety margin. They must therefore rely on behavior to avoid overheating during the warmest times, especially in the lowland tropics. Likewise, species living at temperate latitudes and in alpine habitats must retreat to avoid lethal cold exposure. Behavioral plasticity of habitat use and the energetic consequences of thermal retreats are therefore critical aspects of species' vulnerability to climate warming and extreme events.

Citing Articles

Latitudinal gradient of thermal safety margin in an Australian damselfly: implications for population vulnerability.

Haque M, Paul S, Herberstein M, Khan M R Soc Open Sci. 2025; 12(3):241765.

PMID: 40046666 PMC: 11879627. DOI: 10.1098/rsos.241765.


Vulnerability of amphibians to global warming.

Pottier P, Kearney M, Wu N, Gunderson A, Rej J, Rivera-Villanueva A Nature. 2025; .

PMID: 40044855 DOI: 10.1038/s41586-025-08665-0.


Altitudinal variation in thermal vulnerability of Qinghai-Tibetan Plateau lizards under climate warming.

Zhu Z, Du W, Zhang C, Yu W, Zhao X, Liu Z Curr Zool. 2025; 71(1):99-108.

PMID: 39996260 PMC: 11847016. DOI: 10.1093/cz/zoae031.


Single-nuclei multiome ATAC and RNA sequencing reveals the molecular basis of thermal plasticity in embryos.

OLeary T, Mikucki E, Tangwancharoen S, Boyd J, Frietze S, Helms Cahan S bioRxiv. 2025; .

PMID: 39829925 PMC: 11741353. DOI: 10.1101/2025.01.08.631745.


Lack of thermal acclimation in multiple indices of climate vulnerability in bumblebees.

Poore C, Ibarra-Garibay E, Toth A, Riddell E Proc Biol Sci. 2025; 292(2038):20242216.

PMID: 39809314 PMC: 11732424. DOI: 10.1098/rspb.2024.2216.


References
1.
Cruz F, Fitzgerald L, Espinoza R, Schulte 2nd J . The importance of phylogenetic scale in tests of Bergmann's and Rapoport's rules: lessons from a clade of South American lizards. J Evol Biol. 2005; 18(6):1559-74. DOI: 10.1111/j.1420-9101.2005.00936.x. View

2.
Kearney M, Porter W . Mechanistic niche modelling: combining physiological and spatial data to predict species' ranges. Ecol Lett. 2009; 12(4):334-50. DOI: 10.1111/j.1461-0248.2008.01277.x. View

3.
Willmer P, Unwin D . Field analyses of insect heat budgets: Reflectance, size and heating rates. Oecologia. 2017; 50(2):250-255. DOI: 10.1007/BF00348047. View

4.
Huey R, Deutsch C, Tewksbury J, Vitt L, Hertz P, Alvarez Perez H . Why tropical forest lizards are vulnerable to climate warming. Proc Biol Sci. 2009; 276(1664):1939-48. PMC: 2677251. DOI: 10.1098/rspb.2008.1957. View

5.
Huey R, Slatkin M . Cost and benefits of lizard thermoregulation. Q Rev Biol. 1976; 51(3):363-84. DOI: 10.1086/409470. View