» Articles » PMID: 24589854

Integration of Polarization and Chromatic Cues in the Insect Sky Compass

Overview
Publisher Springer
Date 2014 Mar 5
PMID 24589854
Citations 62
Authors
Affiliations
Soon will be listed here.
Abstract

Animals relying on a celestial compass for spatial orientation may use the position of the sun, the chromatic or intensity gradient of the sky, the polarization pattern of the sky, or a combination of these cues as compass signals. Behavioral experiments in bees and ants, indeed, showed that direct sunlight and sky polarization play a role in sky compass orientation, but the relative importance of these cues are species-specific. Intracellular recordings from polarization-sensitive interneurons in the desert locust and monarch butterfly suggest that inputs from different eye regions, including polarized-light input through the dorsal rim area of the eye and chromatic/intensity gradient input from the main eye, are combined at the level of the medulla to create a robust compass signal. Conflicting input from the polarization and chromatic/intensity channel, resulting from eccentric receptive fields, is eliminated at the level of the anterior optic tubercle and central complex through internal compensation for changing solar elevations, which requires input from a circadian clock. Across several species, the central complex likely serves as an internal sky compass, combining E-vector information with other celestial cues. Descending neurons, likewise, respond both to zenithal polarization and to unpolarized cues in an azimuth-dependent way.

Citing Articles

Chromatic processing and receptive-field structure in neurons of the anterior optic tract of the honeybee brain.

Mota T, Paffhausen B, Menzel R PLoS One. 2024; 19(9):e0310282.

PMID: 39264932 PMC: 11392409. DOI: 10.1371/journal.pone.0310282.


Synaptic ring attractor: A unified framework for attractor dynamics and multiple cues integration.

Chen Y, Zhang L, Chen H, Sun X, Peng J Heliyon. 2024; 10(16):e35458.

PMID: 39220971 PMC: 11365315. DOI: 10.1016/j.heliyon.2024.e35458.


Theoretical principles explain the structure of the insect head direction circuit.

Vilimelis Aceituno P, DallOsto D, Pisokas I Elife. 2024; 13.

PMID: 38814703 PMC: 11139481. DOI: 10.7554/eLife.91533.


Bumblebee nest departures under low light conditions at sunrise and sunset.

Chapman K, Smith M, Gaston K, Hempel de Ibarra N Biol Lett. 2024; 20(4):20230518.

PMID: 38593853 PMC: 11003773. DOI: 10.1098/rsbl.2023.0518.


Importance of magnetic information for neuronal plasticity in desert ants.

Grob R, Muller V, Grubel K, Rossler W, Fleischmann P Proc Natl Acad Sci U S A. 2024; 121(8):e2320764121.

PMID: 38346192 PMC: 10895258. DOI: 10.1073/pnas.2320764121.


References
1.
Dacke M, El Jundi B, Smolka J, Byrne M, Baird E . The role of the sun in the celestial compass of dung beetles. Philos Trans R Soc Lond B Biol Sci. 2014; 369(1636):20130036. PMC: 3886324. DOI: 10.1098/rstb.2013.0036. View

2.
Sakura M, Lambrinos D, Labhart T . Polarized skylight navigation in insects: model and electrophysiology of e-vector coding by neurons in the central complex. J Neurophysiol. 2007; 99(2):667-82. DOI: 10.1152/jn.00784.2007. View

3.
Blum M, Labhart T . Photoreceptor visual fields, ommatidial array, and receptor axon projections in the polarisation-sensitive dorsal rim area of the cricket compound eye. J Comp Physiol A. 2000; 186(2):119-28. DOI: 10.1007/s003590050012. View

4.
Heinze S, Homberg U . Linking the input to the output: new sets of neurons complement the polarization vision network in the locust central complex. J Neurosci. 2009; 29(15):4911-21. PMC: 6665345. DOI: 10.1523/JNEUROSCI.0332-09.2009. View

5.
Henze M, Dannenhauer K, Kohler M, Labhart T, Gesemann M . Opsin evolution and expression in arthropod compound eyes and ocelli: insights from the cricket Gryllus bimaculatus. BMC Evol Biol. 2012; 12:163. PMC: 3502269. DOI: 10.1186/1471-2148-12-163. View