» Articles » PMID: 24584464

Mechanism of IRSp53 Inhibition and Combinatorial Activation by Cdc42 and Downstream Effectors

Overview
Date 2014 Mar 4
PMID 24584464
Citations 43
Authors
Affiliations
Soon will be listed here.
Abstract

The Rho family GTPase effector IRSp53 has essential roles in filopodia formation and neuronal development, but its regulatory mechanism is poorly understood. IRSp53 contains a membrane-binding BAR domain followed by an unconventional CRIB motif that overlaps with a proline-rich region (CRIB-PR) and an SH3 domain that recruits actin cytoskeleton effectors. Using a fluorescence reporter assay, we show that human IRSp53 adopts a closed inactive conformation that opens synergistically with the binding of human Cdc42 to the CRIB-PR and effector proteins, such as the tumor-promoting factor Eps8, to the SH3 domain. The crystal structure of Cdc42 bound to the CRIB-PR reveals a new mode of effector binding to Rho family GTPases. Structure-inspired mutations disrupt autoinhibition and Cdc42 binding in vitro and decouple Cdc42- and IRSp53-dependent filopodia formation in cells. The data support a combinatorial mechanism of IRSp53 activation.

Citing Articles

Mitf regulates gene expression networks implicated in B cell homeostasis, germinal center responses, and tolerance.

Amarnani A, Lopez-Ocasio M, Dilshat R, Anumukonda K, Davila J, Malakhov N Front Immunol. 2024; 15:1339325.

PMID: 38444862 PMC: 10912573. DOI: 10.3389/fimmu.2024.1339325.


Cytoneme-mediated transport of active Wnt5b-Ror2 complexes in zebrafish.

Zhang C, Brunt L, Ono Y, Rogers S, Scholpp S Nature. 2023; 625(7993):126-133.

PMID: 38123680 PMC: 10764289. DOI: 10.1038/s41586-023-06850-7.


A mechanosensing mechanism controls plasma membrane shape homeostasis at the nanoscale.

Quiroga X, Walani N, Disanza A, Chavero A, Mittens A, Tebar F Elife. 2023; 12.

PMID: 37747150 PMC: 10569792. DOI: 10.7554/eLife.72316.


Sensing their plasma membrane curvature allows migrating cells to circumvent obstacles.

Sitarska E, Almeida S, Beckwith M, Stopp J, Czuchnowski J, Siggel M Nat Commun. 2023; 14(1):5644.

PMID: 37704612 PMC: 10499897. DOI: 10.1038/s41467-023-41173-1.


Molecular Relay Stations in Membrane Nanotubes: IRSp53 Involved in Actin-Based Force Generation.

Madarasz T, Brunner B, Halasz H, Telek E, Matko J, Nyitrai M Int J Mol Sci. 2023; 24(17).

PMID: 37685917 PMC: 10487789. DOI: 10.3390/ijms241713112.


References
1.
Chen Z, Borek D, Padrick S, Gomez T, Metlagel Z, Ismail A . Structure and control of the actin regulatory WAVE complex. Nature. 2010; 468(7323):533-8. PMC: 3085272. DOI: 10.1038/nature09623. View

2.
Robens J, Yeow-Fong L, Ng E, Hall C, Manser E . Regulation of IRSp53-dependent filopodial dynamics by antagonism between 14-3-3 binding and SH3-mediated localization. Mol Cell Biol. 2009; 30(3):829-44. PMC: 2812224. DOI: 10.1128/MCB.01574-08. View

3.
Gorelik R, Yang C, Kameswaran V, Dominguez R, Svitkina T . Mechanisms of plasma membrane targeting of formin mDia2 through its amino terminal domains. Mol Biol Cell. 2010; 22(2):189-201. PMC: 3020915. DOI: 10.1091/mbc.E10-03-0256. View

4.
Mattila P, Salminen M, Yamashiro T, Lappalainen P . Mouse MIM, a tissue-specific regulator of cytoskeletal dynamics, interacts with ATP-actin monomers through its C-terminal WH2 domain. J Biol Chem. 2002; 278(10):8452-9. DOI: 10.1074/jbc.M212113200. View

5.
Saarikangas J, Zhao H, Pykalainen A, Laurinmaki P, Mattila P, Kinnunen P . Molecular mechanisms of membrane deformation by I-BAR domain proteins. Curr Biol. 2009; 19(2):95-107. DOI: 10.1016/j.cub.2008.12.029. View