» Articles » PMID: 24580343

Effect of Strong Wakes on Waves in Two-dimensional Plasma Crystals

Overview
Authors
Affiliations
Soon will be listed here.
Abstract

We study the effects of the particle-wake interactions on the dispersion and polarization of dust lattice wave modes in two-dimensional plasma crystals. Most notably, the wake-induced coupling between the modes causes the branches to "attract" each other, and their polarizations become elliptical. Upon the mode hybridization the major axes of the ellipses (remaining mutually orthogonal) rotate by 45°. To demonstrate the importance of the obtained results for experiments, we plot representative particle trajectories and spectral densities of the longitudinal and transverse waves. These characteristics reveal distinct fingerprints of the mixed polarization. Furthermore, we show that at strong coupling the hybrid mode is significantly shifted towards smaller wave numbers, away from the border of the first Brillouin zone (where the hybrid mode is localized for a weak coupling).