» Articles » PMID: 24578352

Signatures of Sex-antagonistic Selection on Recombining Sex Chromosomes

Overview
Journal Genetics
Specialty Genetics
Date 2014 Mar 1
PMID 24578352
Citations 50
Authors
Affiliations
Soon will be listed here.
Abstract

Sex-antagonistic (SA) selection has major evolutionary consequences: it can drive genomic change, constrain adaptation, and maintain genetic variation for fitness. The recombining (or pseudoautosomal) regions of sex chromosomes are a promising setting in which to study SA selection because they tend to accumulate SA polymorphisms and because recombination allows us to deploy the tools of molecular evolution to locate targets of SA selection and quantify evolutionary forces. Here we use coalescent models to characterize the patterns of polymorphism expected within and divergence between recombining X and Y (or Z and W) sex chromosomes. SA selection generates peaks of divergence between X and Y that can extend substantial distances away from the targets of selection. Linkage disequilibrium between neutral sites is also inflated. We show how the pattern of divergence is altered when the SA polymorphism or the sex-determining region was recently established. We use data from the flowering plant Silene latifolia to illustrate how the strength of SA selection might be quantified using molecular data from recombining sex chromosomes.

Citing Articles

No evidence for sex-differential transcriptomes driving genome-wide sex-differential natural selection.

Ming M, Cheng C, Kirkpatrick M, Harpak A Am J Hum Genet. 2025; 112(2):254-260.

PMID: 39814022 PMC: 11866945. DOI: 10.1016/j.ajhg.2024.12.016.


Evolution of a plant sex chromosome driven by expanding pericentromeric recombination suppression.

Filatov D Sci Rep. 2024; 14(1):1373.

PMID: 38228625 PMC: 10791620. DOI: 10.1038/s41598-024-51153-0.


Sex-biased gene content is associated with sex chromosome turnover in Danaini butterflies.

Mora P, Hospodarska M, Volenikova A, Koutecky P, Stundlova J, Dalikova M Mol Ecol. 2024; 33(24):e17256.

PMID: 38180347 PMC: 11628659. DOI: 10.1111/mec.17256.


The evolutionary maintenance of ancient recombining sex chromosomes in the ostrich.

Yazdi H, Olito C, Kawakami T, Unneberg P, Schou M, Cloete S PLoS Genet. 2023; 19(6):e1010801.

PMID: 37390104 PMC: 10343094. DOI: 10.1371/journal.pgen.1010801.


The effects of inversion polymorphisms on patterns of neutral genetic diversity.

Charlesworth B Genetics. 2023; 224(4).

PMID: 37348059 PMC: 10411593. DOI: 10.1093/genetics/iyad116.


References
1.
Patten M, Haig D, Ubeda F . Fitness variation due to sexual antagonism and linkage disequilibrium. Evolution. 2010; 64(12):3638-42. DOI: 10.1111/j.1558-5646.2010.01100.x. View

2.
Vicoso B, Kaiser V, Bachtrog D . Sex-biased gene expression at homomorphic sex chromosomes in emus and its implication for sex chromosome evolution. Proc Natl Acad Sci U S A. 2013; 110(16):6453-8. PMC: 3631621. DOI: 10.1073/pnas.1217027110. View

3.
Ross J, Urton J, Boland J, Shapiro M, Peichel C . Turnover of sex chromosomes in the stickleback fishes (gasterosteidae). PLoS Genet. 2009; 5(2):e1000391. PMC: 2638011. DOI: 10.1371/journal.pgen.1000391. View

4.
Connallon T, Jakubowski E . Association between sex ratio distortion and sexually antagonistic fitness consequences of female choice. Evolution. 2009; 63(8):2179-83. PMC: 2778201. DOI: 10.1111/j.1558-5646.2009.00692.x. View

5.
Connallon T, Clark A . Sex linkage, sex-specific selection, and the role of recombination in the evolution of sexually dimorphic gene expression. Evolution. 2010; 64(12):3417-42. PMC: 2998557. DOI: 10.1111/j.1558-5646.2010.01136.x. View