» Articles » PMID: 24559994

Single-molecule Observation of the Ligand-induced Population Shift of Rhodopsin, a G-protein-coupled Receptor

Overview
Journal Biophys J
Publisher Cell Press
Specialty Biophysics
Date 2014 Feb 25
PMID 24559994
Citations 4
Authors
Affiliations
Soon will be listed here.
Abstract

Rhodopsin is a G-protein-coupled receptor, in which retinal chromophore acts as inverse-agonist or agonist depending on its configuration and protonation state. Photostimulation of rhodopsin results in a pH-dependent equilibrium between the active state (Meta-II) and its inactive precursor (Meta-I). Here, we monitored conformational changes of rhodopsin using a fluorescent probe Alexa594 at the cytoplasmic surface, which shows fluorescence increase upon the generation of active state, by single-molecule measurements. The fluorescence intensity of a single photoactivated rhodopsin molecule alternated between two states. Interestingly, such a fluorescence alternation was also observed for ligand-free rhodopsin (opsin), but not for dark-state rhodopsin. In addition, the pH-dependences of Meta-I/Meta-II equilibrium estimated by fluorescence measurements deviated notably from estimates based on absorption spectra, indicating that both Meta-I and Meta-II are mixtures of two conformers. Our observations indicate that rhodopsin molecules intrinsically adopt both active and inactive conformations, and the ligand retinal shifts the conformational equilibrium. These findings provide dynamical insights into the activation mechanisms of G-protein-coupled receptors.

Citing Articles

Sub-millisecond conformational dynamics of the A adenosine receptor revealed by single-molecule FRET.

Maslov I, Volkov O, Khorn P, Orekhov P, Gusach A, Kuzmichev P Commun Biol. 2023; 6(1):362.

PMID: 37012383 PMC: 10070357. DOI: 10.1038/s42003-023-04727-z.


DEER Analysis of GPCR Conformational Heterogeneity.

Elgeti M, Hubbell W Biomolecules. 2021; 11(6).

PMID: 34067265 PMC: 8224605. DOI: 10.3390/biom11060778.


Lipid-Protein Interplay in Dimerization of Juxtamembrane Domains of Epidermal Growth Factor Receptor.

Maeda R, Sato T, Okamoto K, Yanagawa M, Sako Y Biophys J. 2018; 114(4):893-903.

PMID: 29490249 PMC: 5984969. DOI: 10.1016/j.bpj.2017.12.029.


Lipids Alter Rhodopsin Function via Ligand-like and Solvent-like Interactions.

Salas-Estrada L, Leioatts N, Romo T, Grossfield A Biophys J. 2018; 114(2):355-367.

PMID: 29401433 PMC: 5984976. DOI: 10.1016/j.bpj.2017.11.021.

References
1.
Mansoor S, Palczewski K, Farrens D . Rhodopsin self-associates in asolectin liposomes. Proc Natl Acad Sci U S A. 2006; 103(9):3060-5. PMC: 1413906. DOI: 10.1073/pnas.0511010103. View

2.
Park J, Scheerer P, Hofmann K, Choe H, Ernst O . Crystal structure of the ligand-free G-protein-coupled receptor opsin. Nature. 2008; 454(7201):183-7. DOI: 10.1038/nature07063. View

3.
Ye S, Huber T, Vogel R, Sakmar T . FTIR analysis of GPCR activation using azido probes. Nat Chem Biol. 2009; 5(6):397-9. PMC: 2875874. DOI: 10.1038/nchembio.167. View

4.
Vogel R, Siebert F . Conformations of the active and inactive states of opsin. J Biol Chem. 2001; 276(42):38487-93. DOI: 10.1074/jbc.M105423200. View

5.
Rasmussen S, DeVree B, Zou Y, Kruse A, Chung K, Kobilka T . Crystal structure of the β2 adrenergic receptor-Gs protein complex. Nature. 2011; 477(7366):549-55. PMC: 3184188. DOI: 10.1038/nature10361. View