» Articles » PMID: 24556578

A Simple Fourier Filter for Suppression of the Missing Wedge Ray Artefacts in Single-axis Electron Tomographic Reconstructions

Overview
Journal J Struct Biol
Date 2014 Feb 22
PMID 24556578
Citations 8
Authors
Affiliations
Soon will be listed here.
Abstract

The limited specimen tilting range that is typically available in electron tomography gives rise to a region in the Fourier space of the reconstructed object where experimental data are unavailable - the missing wedge. Since this region is sharply delimited from the area of available data, the reconstructed signal is typically hampered by convolution with its impulse response, which gives rise to the well-known missing wedge artefacts in 3D reconstructions. Despite the recent progress in the field of reconstruction and regularization techniques, the missing wedge artefacts remain untreated in most current reconstruction workflows in structural biology. Therefore we have designed a simple Fourier angular filter that effectively suppresses the ray artefacts in the single-axis tilting projection acquisition scheme, making single-axis tomographic reconstructions easier to interpret in particular at low signal-to-noise ratio in acquired projections. The proposed filter can be easily incorporated into current electron tomographic reconstruction schemes.

Citing Articles

Strain and crystallographic identification of the helically concaved gap surfaces of chiral nanoparticles.

Choi S, Im S, Huh J, Kim S, Kim J, Lim Y Nat Commun. 2023; 14(1):3615.

PMID: 37330546 PMC: 10276881. DOI: 10.1038/s41467-023-39255-1.


Current Update of Collagen Nanomaterials-Fabrication, Characterisation and Its Applications: A Review.

Lo S, Fauzi M Pharmaceutics. 2021; 13(3).

PMID: 33670973 PMC: 7997363. DOI: 10.3390/pharmaceutics13030316.


A Monte Carlo framework for missing wedge restoration and noise removal in cryo-electron tomography.

Moebel E, Kervrann C J Struct Biol X. 2020; 4:100013.

PMID: 32647817 PMC: 7337055. DOI: 10.1016/j.yjsbx.2019.100013.


Tools for visualizing and analyzing Fourier space sampling in Cryo-EM.

Baldwin P, Lyumkis D Prog Biophys Mol Biol. 2020; 160:53-65.

PMID: 32645314 PMC: 7785567. DOI: 10.1016/j.pbiomolbio.2020.06.003.


Single-Molecule 3D Images of "Hole-Hole" IgG1 Homodimers by Individual-Particle Electron Tomography.

Lei D, Liu J, Liu H, Cleveland 4th T, Marino J, Lei M Sci Rep. 2019; 9(1):8864.

PMID: 31221961 PMC: 6586654. DOI: 10.1038/s41598-019-44978-7.


References
1.
Sorzano C, Marabini R, Boisset N, Rietzel E, Schroder R, Herman G . The effect of overabundant projection directions on 3D reconstruction algorithms. J Struct Biol. 2001; 133(2-3):108-18. DOI: 10.1006/jsbi.2001.4338. View

2.
Fernandez J . Computational methods for electron tomography. Micron. 2012; 43(10):1010-30. DOI: 10.1016/j.micron.2012.05.003. View

3.
Penczek P, Marko M, Buttle K, Frank J . Double-tilt electron tomography. Ultramicroscopy. 1995; 60(3):393-410. DOI: 10.1016/0304-3991(95)00078-x. View

4.
Hoog J, Bouchet-Marquis C, McIntosh J, Hoenger A, Gull K . Cryo-electron tomography and 3-D analysis of the intact flagellum in Trypanosoma brucei. J Struct Biol. 2012; 178(2):189-98. PMC: 3355306. DOI: 10.1016/j.jsb.2012.01.009. View

5.
Lee E, Fahimian B, Iancu C, Suloway C, Murphy G, Wright E . Radiation dose reduction and image enhancement in biological imaging through equally-sloped tomography. J Struct Biol. 2008; 164(2):221-7. PMC: 3099251. DOI: 10.1016/j.jsb.2008.07.011. View