» Articles » PMID: 24527048

A Network Pharmacology Approach to Determine Active Compounds and Action Mechanisms of Ge-gen-qin-lian Decoction for Treatment of Type 2 Diabetes

Overview
Date 2014 Feb 15
PMID 24527048
Citations 86
Authors
Affiliations
Soon will be listed here.
Abstract

Traditional Chinese medicine (TCM) herbal formulae can be valuable therapeutic strategies and drug discovery resources. However, the active ingredients and action mechanisms of most TCM formulae remain unclear. Therefore, the identification of potent ingredients and their actions is a major challenge in TCM research. In this study, we used a network pharmacology approach we previously developed to help determine the potential antidiabetic ingredients from the traditional Ge-Gen-Qin-Lian decoction (GGQLD) formula. We predicted the target profiles of all available GGQLD ingredients to infer the active ingredients by clustering the target profile of ingredients with FDA-approved antidiabetic drugs. We also applied network target analysis to evaluate the links between herbal ingredients and pharmacological actions to help explain the action mechanisms of GGQLD. According to the predicted results, we confirmed that a novel antidiabetic ingredient from Puerariae Lobatae radix (Ge-Gen), 4-Hydroxymephenytoin, increased the insulin secretion in RIN-5F cells and improved insulin resistance in 3T3-L1 adipocytes. The network pharmacology strategy used here provided a powerful means for identifying bioactive ingredients and mechanisms of action for TCM herbal formulae, including Ge-Gen-Qin-Lian decoction.

Citing Articles

Network pharmacology-based study on the mechanism of Tangfukang formula against type 2 diabetes mellitus.

Kai Y, Wei W, Yan W, Huijuan G, Xingzhong F J Tradit Chin Med. 2025; 45(1):76-88.

PMID: 39957161 PMC: 11764938. DOI: 10.19852/j.cnki.jtcm.2025.01.007.


Integrating network pharmacology and computational biology to propose Yiqi Sanjie formula's mechanisms in treating NSCLC: molecular docking, ADMET, and molecular dynamics simulation.

Wang Y, He G, Zloh M, Shen T, He Z Transl Cancer Res. 2024; 13(7):3798-3813.

PMID: 39145086 PMC: 11319956. DOI: 10.21037/tcr-24-972.


Integration of serum pharmacochemistry with network pharmacology to reveal the potential mechanism of Yangqing Chenfei formula for the treatment of silicosis.

Yuanyuan H, Xinguang L, Peng Z, Jinyan W, Xinhua Y, Runsu H J Tradit Chin Med. 2024; 44(4):784-793.

PMID: 39066539 PMC: 11337247. DOI: 10.19852/j.cnki.jtcm.20240610.005.


Network analysis to explore the anti-senescence mechanism of Jinchan Yishen Tongluo Formula (JCYSTLF) in diabetic kidneys.

Lu H, Guo J, Li Y, Zhang X, Liu W Heliyon. 2024; 10(9):e29364.

PMID: 38720731 PMC: 11076649. DOI: 10.1016/j.heliyon.2024.e29364.


MD-DFT Calculations on Dissociative Absorption Configurations of FOX-7 on (001)- and (101)-Oriented Crystalline Parylene Protective Membranes.

Luo W, Bian L, Dong F, Nie J, Yang J Polymers (Basel). 2024; 16(3).

PMID: 38337327 PMC: 10857406. DOI: 10.3390/polym16030438.


References
1.
Williford J, Wells A, Hardy R . Fatty acid-induced insulin resistance in adipocytes. Endocrinology. 1997; 138(10):4338-45. DOI: 10.1210/endo.138.10.5458. View

2.
Weidner C, de Groot J, Prasad A, Freiwald A, Quedenau C, Kliem M . Amorfrutins are potent antidiabetic dietary natural products. Proc Natl Acad Sci U S A. 2012; 109(19):7257-62. PMC: 3358853. DOI: 10.1073/pnas.1116971109. View

3.
Huang D, Sherman B, Lempicki R . Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc. 2009; 4(1):44-57. DOI: 10.1038/nprot.2008.211. View

4.
Yeh G, Eisenberg D, Kaptchuk T, Phillips R . Systematic review of herbs and dietary supplements for glycemic control in diabetes. Diabetes Care. 2003; 26(4):1277-94. DOI: 10.2337/diacare.26.4.1277. View

5.
Li S, Zhang B, Zhang N . Network target for screening synergistic drug combinations with application to traditional Chinese medicine. BMC Syst Biol. 2011; 5 Suppl 1:S10. PMC: 3121110. DOI: 10.1186/1752-0509-5-S1-S10. View