» Articles » PMID: 24523860

Structural Identifiability of Viscoelastic Mechanical Systems

Overview
Journal PLoS One
Date 2014 Feb 14
PMID 24523860
Citations 3
Authors
Affiliations
Soon will be listed here.
Abstract

We solve the local and global structural identifiability problems for viscoelastic mechanical models represented by networks of springs and dashpots. We propose a very simple characterization of both local and global structural identifiability based on identifiability tables, with the purpose of providing a guideline for constructing arbitrarily complex, identifiable spring-dashpot networks. We illustrate how to use our results in a number of examples and point to some applications in cardiovascular modeling.

Citing Articles

Identifiability of enzyme kinetic parameters in substrate competition: a case study of CD39/NTPDase1.

McGuinness A, Tahir A, Sutton N, Marquis A Purinergic Signal. 2023; 20(3):257-271.

PMID: 37165287 PMC: 11189375. DOI: 10.1007/s11302-023-09942-1.


Parameter subset selection techniques for problems in mathematical biology.

Olsen C, Ottesen J, Smith R, Olufsen M Biol Cybern. 2018; 113(1-2):121-138.

PMID: 30377765 PMC: 6417952. DOI: 10.1007/s00422-018-0784-8.


Structural correlation method for model reduction and practical estimation of patient specific parameters illustrated on heart rate regulation.

Ottesen J, Mehlsen J, Olufsen M Math Biosci. 2014; 257:50-9.

PMID: 25050793 PMC: 4252605. DOI: 10.1016/j.mbs.2014.07.003.

References
1.
Learoyd B, Taylor M . Alterations with age in the viscoelastic properties of human arterial walls. Circ Res. 1966; 18(3):278-92. DOI: 10.1161/01.res.18.3.278. View

2.
Little M, Heidenreich W, Li G . Parameter identifiability and redundancy: theoretical considerations. PLoS One. 2010; 5(1):e8915. PMC: 2811744. DOI: 10.1371/journal.pone.0008915. View

3.
Houk J, Cornew R, Stark L . A model of adaptation in amphibian spindle receptors. J Theor Biol. 1966; 12(2):196-215. DOI: 10.1016/0022-5193(66)90113-5. View

4.
Miao H, Xia X, Perelson A, Wu H . ON IDENTIFIABILITY OF NONLINEAR ODE MODELS AND APPLICATIONS IN VIRAL DYNAMICS. SIAM Rev Soc Ind Appl Math. 2011; 53(1):3-39. PMC: 3140286. DOI: 10.1137/090757009. View

5.
Mahdi A, Sturdy J, Ottesen J, Olufsen M . Modeling the afferent dynamics of the baroreflex control system. PLoS Comput Biol. 2013; 9(12):e1003384. PMC: 3861044. DOI: 10.1371/journal.pcbi.1003384. View