» Articles » PMID: 24511472

Synthesis, Characterization and Antioxidant Property of Quercetin-Tb(III) Complex

Overview
Journal Adv Pharm Bull
Date 2014 Feb 11
PMID 24511472
Citations 12
Authors
Affiliations
Soon will be listed here.
Abstract

Purpose: Nearly all of flavonoids are good metal chelators and can chelate many metal ions to form different complexes. This article describes a synthesis of Quercetin-Tb(III) in methanol, characterized by using elemental analysis, UV-visible and evaluation of its antioxidant properties.

Methods: The formation of complexes is realized from the UV-visible spectra which shows that the successive formation of Quercetin-Tb(III) occurs. To find out the antioxidant activity variation and the role of Tb(III) ion on the antioxidant activity of the complexes different radical scavenging methods such as: 1,1-diphenyl-2-picrylhydrazyl (DPPH), ferric reducing antioxidant power (FRAP) and 2,2'-azinobis 3-ethylbenzothiazoline-6-sulphonic acid (ABTS) were used.

Results: The results from DPPH, ABTS and FRAP methods showed that Quercetin and Quercetin-Tb(III) complex are capable of donating electron or hydrogen atom, and consequently could react with free radicals or terminate chain reactions in a time- and dose-dependent manner.

Conclusion: This study showed that the chelation of metal ions by Quercetin decrease the redox potential of Quercetin-metal complex.

Citing Articles

Antioxidative and anti-cytogenotoxic potential of (Craib) A. Schmitz extracts against cadmium-induced toxicity in human embryonic kidney (HEK293) and dermal fibroblast (HDF) cells.

Maliyam P, Laphookhieo S, Koedrith P, Puttarak P Heliyon. 2024; 10(14):e34480.

PMID: 39130464 PMC: 11315074. DOI: 10.1016/j.heliyon.2024.e34480.


A multi-spectroscopic and molecular docking approach for DNA/protein binding study and cell viability assay of first-time reported pendent azide bearing Cu(II)-quercetin and dicyanamide bearing Zn(II)-quercetin complexes.

Mudi A, Ray S, Bera M, Dolai M, Das M, Kundu P Heliyon. 2023; 9(12):e22712.

PMID: 38125469 PMC: 10731082. DOI: 10.1016/j.heliyon.2023.e22712.


Chromatographic Methods Developed for the Quantification of Quercetin Extracted from Natural Sources: Systematic Review of Published Studies from 2018 to 2022.

Carvalho D, Pinho C, Oliveira R, Moreira F, Oliveira A Molecules. 2023; 28(23).

PMID: 38067447 PMC: 10708206. DOI: 10.3390/molecules28237714.


Synthesis and Characterization of Quercetin-Iron Complex Nanoparticles for Overcoming Drug Resistance.

Prestianni L, Espinal E, Hathcock S, Vollmuth N, Wang P, Holler R Pharmaceutics. 2023; 15(4).

PMID: 37111527 PMC: 10144594. DOI: 10.3390/pharmaceutics15041041.


Overview of Research on Vanadium-Quercetin Complexes with a Historical Outline.

Scibior A Antioxidants (Basel). 2022; 11(4).

PMID: 35453475 PMC: 9029821. DOI: 10.3390/antiox11040790.


References
1.
Ahmadi S, Dehghan G, Hosseinpourfeizi M, Ezzati Nazhad Dolatabadi J, Kashanian S . Preparation, characterization, and DNA binding studies of water-soluble quercetin--molybdenum(VI) complex. DNA Cell Biol. 2011; 30(7):517-23. DOI: 10.1089/dna.2010.1205. View

2.
Bukhari S, Memon S, Mahroof-Tahir M, Bhanger M . Synthesis, characterization and antioxidant activity copper-quercetin complex. Spectrochim Acta A Mol Biomol Spectrosc. 2008; 71(5):1901-6. DOI: 10.1016/j.saa.2008.07.030. View

3.
Cornard J, Merlin J . Spectroscopic and structural study of complexes of quercetin with Al(III). J Inorg Biochem. 2002; 92(1):19-27. DOI: 10.1016/s0162-0134(02)00469-5. View

4.
Hu Y, Yue H, Li X, Zhang S, Tang E, Zhang L . Molecular spectroscopic studies on the interaction of morin with bovine serum albumin. J Photochem Photobiol B. 2012; 112:16-22. DOI: 10.1016/j.jphotobiol.2012.04.001. View

5.
Dehghan G, Ezzati Nazhad Dolatabadi J, Jouyban A, Asadpour Zeynali K, Ahmadi S, Kashanian S . Spectroscopic studies on the interaction of quercetin-terbium(III) complex with calf thymus DNA. DNA Cell Biol. 2010; 30(3):195-201. DOI: 10.1089/dna.2010.1063. View