The Nature of Dual-task Interference During Gait in Incident Parkinson's Disease
Overview
Authors
Affiliations
Dual-task interference during gait is a common phenomenon in older adults and people with Parkinson's disease (PD). Dual-task performance is driven by cognitive processes involving executive function, attention and working memory which underpin resource capacity and allocation. The underlying processes that contribute to dual-task interference are poorly understood, and confounded by methodological differences. The aim of this study was to explore the nature of dual-task interference in PD with respect to age-matched controls. We examined 121 people with early PD and 189 controls and controlled for baseline task demand on both tasks allowing between-group differences to be attributed to dual-task interference rather than differences in baseline performance. We also compared a wide range of gait characteristics to evaluate the pattern of interference. Participants walked for two minutes at a preferred pace under single- and dual-task (test of working memory capacity-digit span recall) conditions. In a subgroup task demand was increased (digit span+1) (n=55 control, n=44 PD) to assess the influence of resource capacity. Finally the association between dual-task interference with motor and cognitive characteristics was examined to evaluate resource capacity and allocation. PD and controls responded similarly to the dual-task for all gait characteristics except for step width and step width variability and this was the same when task demand increased (dual+1). Control participants took wider steps (p=0.006) and step width variability increased significantly for controls (p=0.001) but not PD. Interference was specific to the gait characteristic rather than a global pattern of impairment. Digit span error rates were not significantly different between groups during dual-task performance. There were no significant correlations with dual-task interference and global cognition, motor deficit, and executive function for either group. Effects of dual-tasks on gait performance are twofold and specific to the gait characteristic. They reflect an age-related reduction in gait performance (especially forward progression) in PD and controls possibly due to reduced resource capacity; and secondly, show postural stability during walking in early PD is disproportionately affected highlighting a PD-specific dual-task co-ordination deficit. Further work is required to identify the cognitive, executive and motor correlates of dual-task interference from which inferences about underlying cognitive processes can be made. These findings inform an understanding of dual-task impairment in early PD and suggest that management should target postural control under dual-task conditions from the early stages.
Honzikova L, Dabrowska M, Skrinarova I, Mullerova K, cechackova R, Augste E Medicina (Kaunas). 2025; 61(2).
PMID: 40005365 PMC: 11857223. DOI: 10.3390/medicina61020248.
A Review of Recent Advances in Cognitive-Motor Dual-Tasking for Parkinson's Disease Rehabilitation.
Tan X, Wang K, Sun W, Li X, Wang W, Tian F Sensors (Basel). 2024; 24(19).
PMID: 39409390 PMC: 11478396. DOI: 10.3390/s24196353.
Cholinergic nucleus degeneration and its association with gait impairment in Parkinson's disease.
Zhang X, Wang M, Lee S, Yue Y, Chen Z, Zhang Y J Neuroeng Rehabil. 2024; 21(1):120.
PMID: 39026279 PMC: 11256459. DOI: 10.1186/s12984-024-01417-7.
Irons J, Williams A, Holland J, Jones J Int J Environ Res Public Health. 2024; 21(4).
PMID: 38673425 PMC: 11050379. DOI: 10.3390/ijerph21040514.
Tang H, Liao X, Yao J, Xing Y, Zhao X, Cheng W Brain Behav. 2024; 14(4):e3440.
PMID: 38538928 PMC: 10973098. DOI: 10.1002/brb3.3440.