» Articles » PMID: 24492088

Olfactory Maps, Circuits and Computations

Overview
Specialties Biology
Neurology
Date 2014 Feb 5
PMID 24492088
Citations 49
Authors
Affiliations
Soon will be listed here.
Abstract

Sensory information in the visual, auditory and somatosensory systems is organized topographically, with key sensory features ordered in space across neural sheets. Despite the existence of a spatially stereotyped map of odor identity within the olfactory bulb, it is unclear whether the higher olfactory cortex uses topography to organize information about smells. Here, we review recent work on the anatomy, microcircuitry and neuromodulation of two higher-order olfactory areas: the piriform cortex and the olfactory tubercle. The piriform is an archicortical region with an extensive local associational network that constructs representations of odor identity. The olfactory tubercle is an extension of the ventral striatum that may use reward-based learning rules to encode odor valence. We argue that in contrast to brain circuits for other sensory modalities, both the piriform and the olfactory tubercle largely discard any topography present in the bulb and instead use distributive afferent connectivity, local learning rules and input from neuromodulatory centers to build behaviorally relevant representations of olfactory stimuli.

Citing Articles

Behavioral and neurobiological implications of kairomones for rodents: an updated review.

Manjunath D, Sampath H, Kirkwood R, Santhosh S, Sankarganesh D Front Neurosci. 2025; 19:1485312.

PMID: 40046434 PMC: 11880007. DOI: 10.3389/fnins.2025.1485312.


Differential encoding of odor and place in mouse piriform and entorhinal cortex.

Mena W, Baker K, Rubin A, Kohli S, Yoo Y, Bathellier B bioRxiv. 2025; .

PMID: 39829902 PMC: 11741242. DOI: 10.1101/2023.10.05.561119.


Bilateral Alignment of Receptive Fields in the Olfactory Cortex.

Grimaud J, Dorrell W, Jayakumar S, Pehlevan C, Murthy V eNeuro. 2024; 11(11).

PMID: 39433407 PMC: 11540595. DOI: 10.1523/ENEURO.0155-24.2024.


Validation of a Paralimbic-Related Subcortical Brain Dysmaturation MRI Score in Infants with Congenital Heart Disease.

Reynolds W, Votava-Smith J, Gabriel G, Lee V, Rajagopalan V, Wu Y J Clin Med. 2024; 13(19).

PMID: 39407833 PMC: 11476423. DOI: 10.3390/jcm13195772.


Attenuation of the neuropathogenic equine herpesvirus type 1 strain Ab4p in hamsters by a single amino acid mutation (D752N) in viral DNA polymerase ORF30.

Nishimura F, Fukushi N, Sakai H, Fukushi H J Vet Med Sci. 2024; 86(12):1273-1278.

PMID: 39384384 PMC: 11612248. DOI: 10.1292/jvms.24-0338.


References
1.
Gire D, Whitesell J, Doucette W, Restrepo D . Information for decision-making and stimulus identification is multiplexed in sensory cortex. Nat Neurosci. 2013; 16(8):991-3. PMC: 3725200. DOI: 10.1038/nn.3432. View

2.
Le Moine C, Bloch B . D1 and D2 dopamine receptor gene expression in the rat striatum: sensitive cRNA probes demonstrate prominent segregation of D1 and D2 mRNAs in distinct neuronal populations of the dorsal and ventral striatum. J Comp Neurol. 1995; 355(3):418-26. DOI: 10.1002/cne.903550308. View

3.
Suzuki N, Bekkers J . Inhibitory interneurons in the piriform cortex. Clin Exp Pharmacol Physiol. 2007; 34(10):1064-9. DOI: 10.1111/j.1440-1681.2007.04723.x. View

4.
Isaacson J . Odor representations in mammalian cortical circuits. Curr Opin Neurobiol. 2010; 20(3):328-31. PMC: 2896888. DOI: 10.1016/j.conb.2010.02.004. View

5.
Koob G, Riley S, Smith S, Robbins T . Effects of 6-hydroxydopamine lesions of the nucleus accumbens septi and olfactory tubercle on feeding, locomotor activity, and amphetamine anorexia in the rat. J Comp Physiol Psychol. 1978; 92(5):917-27. DOI: 10.1037/h0077542. View