» Articles » PMID: 24487617

Skilled Reaching Relies on a V2a Propriospinal Internal Copy Circuit

Overview
Journal Nature
Specialty Science
Date 2014 Feb 4
PMID 24487617
Citations 160
Authors
Affiliations
Soon will be listed here.
Abstract

The precision of skilled forelimb movement has long been presumed to rely on rapid feedback corrections triggered by internally directed copies of outgoing motor commands, but the functional relevance of inferred internal copy circuits has remained unclear. One class of spinal interneurons implicated in the control of mammalian forelimb movement, cervical propriospinal neurons (PNs), has the potential to convey an internal copy of premotor signals through dual innervation of forelimb-innervating motor neurons and precerebellar neurons of the lateral reticular nucleus. Here we examine whether the PN internal copy pathway functions in the control of goal-directed reaching. In mice, PNs include a genetically accessible subpopulation of cervical V2a interneurons, and their targeted ablation perturbs reaching while leaving intact other elements of forelimb movement. Moreover, optogenetic activation of the PN internal copy branch recruits a rapid cerebellar feedback loop that modulates forelimb motor neuron activity and severely disrupts reaching kinematics. Our findings implicate V2a PNs as the focus of an internal copy pathway assigned to the rapid updating of motor output during reaching behaviour.

Citing Articles

The spinal premotor network driving scratching flexor and extensor alternation.

Yao M, Nagamori A, Azim E, Sharpee T, Goulding M, Golomb D bioRxiv. 2025; .

PMID: 39829804 PMC: 11741273. DOI: 10.1101/2025.01.08.631866.


A brain-wide map of descending inputs onto spinal V1 interneurons.

Chapman P, Kulkarni A, Trevisan A, Han K, Hinton J, Deltuvaite P Neuron. 2024; 113(4):524-538.e6.

PMID: 39719703 PMC: 11842218. DOI: 10.1016/j.neuron.2024.11.019.


Distinct differentiation trajectories leave lasting impacts on gene regulation and function of V2a interneurons.

Elder N, Majd A, Bulger E, Samuel R, Zholudeva L, McDevitt T bioRxiv. 2024; .

PMID: 39677634 PMC: 11642877. DOI: 10.1101/2024.12.03.626573.


Compensatory adaptation of parallel motor pathways promotes skilled forelimb recovery after spinal cord injury.

Sheikh I, Keefe K, Sterling N, Junker I, Li C, Chen J iScience. 2024; 27(12):111371.

PMID: 39654633 PMC: 11626773. DOI: 10.1016/j.isci.2024.111371.


SpinalTRAQ: A novel volumetric cervical spinal cord atlas identifies the corticospinal tract synaptic projectome in healthy and post-stroke mice.

Poinsatte K, Kenwood M, Betz D, Nawaby A, Ajay A, Xu W bioRxiv. 2024; .

PMID: 39416130 PMC: 11482800. DOI: 10.1101/2024.08.23.609434.


References
1.
Zhang F, Gradinaru V, Adamantidis A, Durand R, Airan R, De Lecea L . Optogenetic interrogation of neural circuits: technology for probing mammalian brain structures. Nat Protoc. 2010; 5(3):439-56. PMC: 4503465. DOI: 10.1038/nprot.2009.226. View

2.
Alstermark B, KUMMEL H . Transneuronal transport of wheat germ agglutinin conjugated horseradish peroxidase into last order spinal interneurones projecting to acromio- and spinodeltoideus motoneurones in the cat. 2. Differential labelling of interneurones depending on.... Exp Brain Res. 1990; 80(1):96-103. DOI: 10.1007/BF00228851. View

3.
Kawato M . Internal models for motor control and trajectory planning. Curr Opin Neurobiol. 1999; 9(6):718-27. DOI: 10.1016/s0959-4388(99)00028-8. View

4.
Fujita M . Adaptive filter model of the cerebellum. Biol Cybern. 1982; 45(3):195-206. DOI: 10.1007/BF00336192. View

5.
Isa T, Ohki Y, Alstermark B, Pettersson L, Sasaki S . Direct and indirect cortico-motoneuronal pathways and control of hand/arm movements. Physiology (Bethesda). 2007; 22:145-52. DOI: 10.1152/physiol.00045.2006. View