» Articles » PMID: 2448139

Transcriptional Regulation of the Human Papillomavirus-16 E6-E7 Promoter by a Keratinocyte-dependent Enhancer, and by Viral E2 Trans-activator and Repressor Gene Products: Implications for Cervical Carcinogenesis

Overview
Journal EMBO J
Date 1987 Dec 1
PMID 2448139
Citations 126
Authors
Affiliations
Soon will be listed here.
Abstract

The transcriptional promoter of the candidate E6-E7 transforming gene region of human papillomavirus (HPV)-16 (P97) was active in transiently transfected cervical carcinoma cells when linked to the HSV-1 tk or bacterial cat genes. Sequences 5' to P97 contain a short enhancer element responding to cellular factor(s) in uninfected human foreskin keratinocytes and in cervical carcinoma cells, but not in human or animal fibroblasts. The E2 trans-activator products of HPV-16 or of the related bovine papillomavirus (BPV)-1 further elevated HPV-16-driven transcripts in co-transfections, and required the presence of E2-binding ACC(N)6GGT cores in cis. A 'short E2' C-terminal repressor gene product (sE2) of HPV-16 or the BPV-1 sE2 repressor not only inhibited viral E2 trans-activation, but also suppressed enhancer response to keratinocytic factors. Suppression by the sE2 products was abolished by deletion of the E2-binding cores in cis or by a mutation in the sE2 DNA binding domain. The keratinocyte-dependent enhancer is likely to contribute to the epithelial cell tropism of HPV-16, and may direct persistent E6-E7 gene transcription in response to cellular factors in cervical carcinoma cells in which the viral E2 genes are inactive.

Citing Articles

The immune microenvironment of cancer of the uterine cervix.

Mastrogeorgiou M, Chatzikalil E, Theocharis S, Papoudou-Bai A, Peoch M, Mobarki M Histol Histopathol. 2024; 39(10):1245-1271.

PMID: 38483012 DOI: 10.14670/HH-18-727.


Focal Adhesion Kinase Binds to the HPV E2 Protein to Regulate Initial Replication after Infection.

Jose L, Gonzalez J, Kessinger E, Androphy E, DeSmet M Pathogens. 2023; 12(10).

PMID: 37887719 PMC: 10609836. DOI: 10.3390/pathogens12101203.


Sequence-Dependent Interaction of the Human Papillomavirus E2 Protein with the DNA Elements on Its DNA Replication Origin.

Yilmaz G, Biswas-Fiss E, Biswas S Int J Mol Sci. 2023; 24(7).

PMID: 37047526 PMC: 10095481. DOI: 10.3390/ijms24076555.


hnRNP K induces HPV16 oncogene expression and promotes cervical cancerization.

Lyu Y, Song L, Mao R, Liu C, Feng M, Wu C J Cancer Res Clin Oncol. 2023; 149(9):6225-6237.

PMID: 36700980 DOI: 10.1007/s00432-023-04585-6.


Viral Hijacking of BET Proteins.

Chen I, Ott M Viruses. 2022; 14(10).

PMID: 36298829 PMC: 9609653. DOI: 10.3390/v14102274.


References
1.
Schwarz E . Different human cervical carcinoma cell lines show similar transcription patterns of human papillomavirus type 18 early genes. EMBO J. 1986; 5(9):2285-92. PMC: 1167112. DOI: 10.1002/j.1460-2075.1986.tb04496.x. View

2.
Baker C, Phelps W, Lindgren V, Braun M, Gonda M, Howley P . Structural and transcriptional analysis of human papillomavirus type 16 sequences in cervical carcinoma cell lines. J Virol. 1987; 61(4):962-71. PMC: 254051. DOI: 10.1128/JVI.61.4.962-971.1987. View

3.
Dartmann K, Schwarz E, Gissmann L, zur Hausen H . The nucleotide sequence and genome organization of human papilloma virus type 11. Virology. 1986; 151(1):124-30. DOI: 10.1016/0042-6822(86)90110-8. View

4.
Lehn H, Krieg P, Sauer G . Papillomavirus genomes in human cervical tumors: analysis of their transcriptional activity. Proc Natl Acad Sci U S A. 1985; 82(16):5540-4. PMC: 391158. DOI: 10.1073/pnas.82.16.5540. View

5.
Lancaster W . Apparent lack of integration of bovine papillomavirus DNA in virus-induced equine and bovine tumor cells and virus-transformed mouse cells. Virology. 1981; 108(2):251-5. DOI: 10.1016/0042-6822(81)90433-5. View