Dual-energy CT-based Phantomless in Vivo Three-dimensional Bone Mineral Density Assessment of the Lumbar Spine
Authors
Affiliations
Purpose: To evaluate the feasibility of phantomless in vivo dual-energy computed tomography (CT)-based three-dimensional (3D) bone mineral density (BMD) assessment in comparison with dual x-ray absorptiometry (DXA).
Materials And Methods: This retrospective study was approved by the institutional review board, and the requirement to obtain informed consent was waived. Data from clinically indicated dual-energy CT and DXA examinations within 2 months, comprising the lumbar spine of 40 patients, were included. By using automated dedicated postprocessing dual-energy CT software, the trabecular bone of lumbar vertebrae L1-L4 were analyzed and segmented. A mixed-effects model was used to assess the correlations between BMD values derived from dual-energy CT and DXA.
Results: One hundred sixty lumbar vertebrae were analyzed in 40 patients (mean age, 57.1 years; range, 24-85 years), 21 male (mean age, 54.3 years; range, 24-85 years) and 19 female (mean age, 58.5 years; range, 31-80 years). Mean BMD of L1-L4 determined with DXA was 0.995 g/cm(2), and 18 patients (45%) showed an osteoporotic BMD (T score less than -2.5) of at least two vertebrae. Mean dual-energy CT-based BMD of L1-L4 was 0.254 g/cm(3). Bland-Altman analysis with mixed effects demonstrated a lack of correlation between dual-energy CT-based and DXA-based BMD values, with a mean difference of 0.7441 and 95% limits of agreement of 0.7441 ± 0.4080.
Conclusion: Dedicated postprocessing of dual-energy CT data allows for phantomless in vivo BMD assessment of the trabecular bone of lumbar vertebrae and enables freely rotatable color-coded 3D visualization of intravertebral BMD distribution.
Assessing osteoporosis and bone mineral density through F-NaF uptake at lumbar spine.
Huang J, Li J, Li Z, Qin J, Mu X, Fu W Ann Nucl Med. 2024; 39(2):150-157.
PMID: 39317874 DOI: 10.1007/s12149-024-01982-w.
Yang Q, Wang Z, Han H, Zhang H, Yu W Quant Imaging Med Surg. 2024; 14(6):4041-4053.
PMID: 38846294 PMC: 11151259. DOI: 10.21037/qims-23-1741.
Photon-Counting Computed Tomography for Microstructural Imaging of Bone and Joints.
Quintiens J, van Lenthe G Curr Osteoporos Rep. 2024; 22(4):387-395.
PMID: 38833188 DOI: 10.1007/s11914-024-00876-0.
Stoppino L, Piscone S, Saccone S, Ciccarelli S, Marinelli L, Milillo P J Imaging. 2024; 10(5).
PMID: 38786558 PMC: 11122249. DOI: 10.3390/jimaging10050104.
Su D, Wu Y, Yang S, Ma D, Zhang H, Ma Y Sci Rep. 2024; 14(1):5967.
PMID: 38472263 PMC: 10933353. DOI: 10.1038/s41598-024-56199-8.