» Articles » PMID: 24446486

Parkin and PINK1 Function in a Vesicular Trafficking Pathway Regulating Mitochondrial Quality Control

Overview
Journal EMBO J
Date 2014 Jan 22
PMID 24446486
Citations 389
Authors
Affiliations
Soon will be listed here.
Abstract

Mitochondrial dysfunction has long been associated with Parkinson's disease (PD). Parkin and PINK1, two genes associated with familial PD, have been implicated in the degradation of depolarized mitochondria via autophagy (mitophagy). Here, we describe the involvement of parkin and PINK1 in a vesicular pathway regulating mitochondrial quality control. This pathway is distinct from canonical mitophagy and is triggered by the generation of oxidative stress from within mitochondria. Wild-type but not PD-linked mutant parkin supports the biogenesis of a population of mitochondria-derived vesicles (MDVs), which bud off mitochondria and contain a specific repertoire of cargo proteins. These MDVs require PINK1 expression and ultimately target to lysosomes for degradation. We hypothesize that loss of this parkin- and PINK1-dependent trafficking mechanism impairs the ability of mitochondria to selectively degrade oxidized and damaged proteins leading, over time, to the mitochondrial dysfunction noted in PD.

Citing Articles

Enhanced SIRT3 expression restores mitochondrial quality control mechanism to reverse osteogenic impairment in type 2 diabetes mellitus.

Xian Y, Liu B, Shen T, Yang L, Peng R, Shen H Bone Res. 2025; 13(1):30.

PMID: 40025004 PMC: 11873136. DOI: 10.1038/s41413-024-00399-5.


Lysosome-Mitochondrial Crosstalk in Cellular Stress and Disease.

Kiraly S, Stanley J, Eden E Antioxidants (Basel). 2025; 14(2).

PMID: 40002312 PMC: 11852311. DOI: 10.3390/antiox14020125.


Dexmedetomidine activates mitophagy and protects against pyroptosis in oxygen-glucose deprivation/reperfusion-induced brain damage via PINK1/Parkin pathway activation.

Zhang J, Li R, Wang L, Ni S J Bioenerg Biomembr. 2025; .

PMID: 39985625 DOI: 10.1007/s10863-025-10051-4.


Secretory mitophagy: an extracellular vesicle-mediated adaptive mechanism for cancer cell survival under oxidative stress.

Gade P, Rivera A, Hasanzadah L, Strompf S, Philipson T, Gadziala M Front Cell Dev Biol. 2025; 12:1490902.

PMID: 39949610 PMC: 11821619. DOI: 10.3389/fcell.2024.1490902.


Exercise-induced extracellular vesicles in reprogramming energy metabolism in cancer.

Puurand M, Llorente A, Line A, Kaambre T Front Oncol. 2025; 14():1480074.

PMID: 39834935 PMC: 11743358. DOI: 10.3389/fonc.2024.1480074.


References
1.
HATEFI Y . The mitochondrial electron transport and oxidative phosphorylation system. Annu Rev Biochem. 1985; 54:1015-69. DOI: 10.1146/annurev.bi.54.070185.005055. View

2.
Yoshii S, Kishi C, Ishihara N, Mizushima N . Parkin mediates proteasome-dependent protein degradation and rupture of the outer mitochondrial membrane. J Biol Chem. 2011; 286(22):19630-40. PMC: 3103342. DOI: 10.1074/jbc.M110.209338. View

3.
Tatsuta T, Langer T . Quality control of mitochondria: protection against neurodegeneration and ageing. EMBO J. 2008; 27(2):306-14. PMC: 2234350. DOI: 10.1038/sj.emboj.7601972. View

4.
Campanella M, Casswell E, Chong S, Farah Z, Wieckowski M, Abramov A . Regulation of mitochondrial structure and function by the F1Fo-ATPase inhibitor protein, IF1. Cell Metab. 2008; 8(1):13-25. DOI: 10.1016/j.cmet.2008.06.001. View

5.
Park J, Lee S, Lee S, Kim Y, Song S, Kim S . Mitochondrial dysfunction in Drosophila PINK1 mutants is complemented by parkin. Nature. 2006; 441(7097):1157-61. DOI: 10.1038/nature04788. View