Yu Z, Ma J, Zhang M, Li X, Sun Y, Zhang M
Sci Adv. 2023; 9(1):eade2493.
PMID: 36598987
PMC: 9812374.
DOI: 10.1126/sciadv.ade2493.
Polak M, Karcz W
Int J Mol Sci. 2021; 22(9).
PMID: 34065110
PMC: 8125996.
DOI: 10.3390/ijms22095017.
Du M, Spalding E, Gray W
Annu Rev Plant Biol. 2020; 71:379-402.
PMID: 32131604
PMC: 7733314.
DOI: 10.1146/annurev-arplant-073019-025907.
Spartz A, Ren H, Park M, Grandt K, Lee S, Murphy A
Plant Cell. 2014; 26(5):2129-2142.
PMID: 24858935
PMC: 4079373.
DOI: 10.1105/tpc.114.126037.
Nelles A
Planta. 2014; 137(3):293-8.
PMID: 24420668
DOI: 10.1007/BF00388165.
Rapid auxin- and fusicoccin-enhanced Rb(+) uptake and malate synthesis in Avena coleoptile sections.
Stout R, Johnson K, Rayle D
Planta. 2014; 139(1):35-41.
PMID: 24414103
DOI: 10.1007/BF00390807.
The contribution of tonoplast and plasma membrane to the electrical properties of a higher-plant cell.
Goldsmith M, Cleland R
Planta. 2014; 143(3):261-5.
PMID: 24408463
DOI: 10.1007/BF00391996.
The role of acidification in gibberellic acid- and fusicoccin-induced elongation growth of lettuce hypocotyl sections.
Stuart D, Jones R
Planta. 2014; 142(2):135-45.
PMID: 24408094
DOI: 10.1007/BF00388204.
Protein synthesis and auxin-induced growth: Inhibitor studies.
Bates G, Cleland R
Planta. 2013; 145(5):437-42.
PMID: 24317859
DOI: 10.1007/BF00380097.
Protein patterns in the oat coleoptile as influenced by auxin and by protein turnover.
Bates G, Cleland R
Planta. 2013; 148(5):429-36.
PMID: 24310183
DOI: 10.1007/BF00552655.
The role of the epidermis in auxin-induced and fusicoccin-induced elongation of Pisum sativum stem segments.
Brummell D, Hall J
Planta. 2013; 150(5):371-9.
PMID: 24306886
DOI: 10.1007/BF00390172.
Rapid response of the plasma-membrane potential in oat coleoptiles to auxin and other weak acids.
Bates G, Goldsmith M
Planta. 2013; 159(3):231-7.
PMID: 24258173
DOI: 10.1007/BF00397530.
Evidence for the acid-growth theory of fusicoccin action.
Kutschera U, Schopfer P
Planta. 2013; 163(4):494-9.
PMID: 24249448
DOI: 10.1007/BF00392706.
Evidence against the acid-growth theory of auxin action.
Kutschera U, Schopfer P
Planta. 2013; 163(4):483-93.
PMID: 24249447
DOI: 10.1007/BF00392705.
Incubation of corn coleoptiles with auxin enhances in-vitro fusicoccin binding.
Aducci P, Ballio A, Marra M
Planta. 2013; 167(1):129-32.
PMID: 24241742
DOI: 10.1007/BF00446379.
Use of a pH-response curve for growth to predict apparent wall pH in elongating segments of maize coleoptiles and sunflower hypocotyls.
Vesper M
Planta. 2013; 166(1):96-104.
PMID: 24241317
DOI: 10.1007/BF00397391.
Long-term acid-induced wall extension in an in-vitro system.
Cleland R, Cosgrove D, Tepfer M
Planta. 2013; 170(3):379-85.
PMID: 24232968
DOI: 10.1007/BF00395030.
The role of wall calcium in the extension of cell walls of soybean hypocotyls.
Virk S, Cleland R
Planta. 2013; 182(4):559-64.
PMID: 24197377
DOI: 10.1007/BF02341032.
Role of the plasma membrane H+-ATPase in auxin-induced elongation growth: historical and new aspects.
Hager A
J Plant Res. 2003; 116(6):483-505.
PMID: 12937999
DOI: 10.1007/s10265-003-0110-x.
The proton pumps of the plasmalemma and the tonoplast of higher plants.
Marre E, Ballarin-Denti A
J Bioenerg Biomembr. 1985; 17(1):1-21.
PMID: 2859282
DOI: 10.1007/BF00744985.