Assessing Surgical Site Infection Risk Factors Using Electronic Medical Records and Text Mining
Overview
Affiliations
Text mining techniques to detect surgical site infections (SSI) in unstructured clinical notes were used to improve SSI detection. In conjuction with data from an integrated electronic medical record, all of the 22 SSIs detected by traditional hospital-based surveillance were found using text mining, along with an additional 37 SSIs not detected by traditional surveillance.
Irgang L, Barth H, Holmen M J Healthc Inform Res. 2023; 7(1):1-41.
PMID: 36910913 PMC: 9995622. DOI: 10.1007/s41666-023-00129-2.
Wu G, Khair S, Yang F, Cheligeer C, Southern D, Zhang Z Ann Med Surg (Lond). 2022; 84:104956.
PMID: 36582918 PMC: 9793260. DOI: 10.1016/j.amsu.2022.104956.
Streefkerk H, Verkooijen R, Bramer W, Verbrugh H Euro Surveill. 2020; 25(2).
PMID: 31964462 PMC: 6976884. DOI: 10.2807/1560-7917.ES.2020.25.2.1900321.
Predicting the occurrence of surgical site infections using text mining and machine learning.
da Silva D, Ten Caten C, Dos Santos R, Fogliatto F, Hsuan J PLoS One. 2019; 14(12):e0226272.
PMID: 31834905 PMC: 6910696. DOI: 10.1371/journal.pone.0226272.
Letica-Kriegel A, Salmasian H, Vawdrey D, Youngerman B, Green R, Furuya E BMJ Open. 2019; 9(2):e022137.
PMID: 30796114 PMC: 6398917. DOI: 10.1136/bmjopen-2018-022137.