Pardis W, Grabb K, DeGrandpre M, Spaulding R, Beck J, Pfeifer J
Sensors (Basel). 2022; 22(20).
PMID: 36298277
PMC: 9609735.
DOI: 10.3390/s22207924.
Nam O, Suzuki I, Shiraiwa Y, Jin E
Microorganisms. 2020; 8(9).
PMID: 32927844
PMC: 7563939.
DOI: 10.3390/microorganisms8091389.
Linge Johnsen S, Bollmann J
PLoS One. 2020; 15(3):e0230569.
PMID: 32218602
PMC: 7101162.
DOI: 10.1371/journal.pone.0230569.
Nam O, Park J, Lee H, Jin E
PLoS One. 2019; 14(8):e0221938.
PMID: 31465514
PMC: 6715215.
DOI: 10.1371/journal.pone.0221938.
Heidenreich E, Wordenweber R, Kirschhofer F, Nusser M, Friedrich F, Fahl K
PLoS One. 2019; 14(7):e0218564.
PMID: 31291290
PMC: 6619986.
DOI: 10.1371/journal.pone.0218564.
Carbonic Anhydrase as a Biomarker of Global and Local Impacts: Insights from Calcifying Animals.
Zebral Y, Fonseca J, Marques J, Bianchini A
Int J Mol Sci. 2019; 20(12).
PMID: 31242558
PMC: 6627289.
DOI: 10.3390/ijms20123092.
Blueprints for the Next Generation of Bioinspired and Biomimetic Mineralised Composites for Bone Regeneration.
Walsh P, Fee K, Clarke S, Julius M, Buchanan F
Mar Drugs. 2018; 16(8).
PMID: 30127281
PMC: 6117730.
DOI: 10.3390/md16080288.
Change in Emiliania huxleyi Virus Assemblage Diversity but Not in Host Genetic Composition during an Ocean Acidification Mesocosm Experiment.
Highfield A, Joint I, Gilbert J, Crawfurd K, Schroeder D
Viruses. 2017; 9(3).
PMID: 28282890
PMC: 5371796.
DOI: 10.3390/v9030041.
The origin of carbon isotope vital effects in coccolith calcite.
McClelland H, Bruggeman J, Hermoso M, Rickaby R
Nat Commun. 2017; 8:14511.
PMID: 28262764
PMC: 5343501.
DOI: 10.1038/ncomms14511.
Ocean acidification modulates expression of genes and physiological performance of a marine diatom.
Li Y, Zhuang S, Wu Y, Ren H, Chen F, Lin X
PLoS One. 2017; 12(2):e0170970.
PMID: 28192486
PMC: 5305191.
DOI: 10.1371/journal.pone.0170970.
Effect of Ocean Acidification and pH Fluctuations on the Growth and Development of Coralline Algal Recruits, and an Associated Benthic Algal Assemblage.
Roleda M, Cornwall C, Feng Y, McGraw C, Smith A, Hurd C
PLoS One. 2015; 10(10):e0140394.
PMID: 26469945
PMC: 4607452.
DOI: 10.1371/journal.pone.0140394.
Saturating light and not increased carbon dioxide under ocean acidification drives photosynthesis and growth in Ulva rigida (Chlorophyta).
Rautenberger R, Fernandez P, Strittmatter M, Heesch S, Cornwall C, Hurd C
Ecol Evol. 2015; 5(4):874-88.
PMID: 25750714
PMC: 4338970.
DOI: 10.1002/ece3.1382.
Gene expression changes in the coccolithophore Emiliania huxleyi after 500 generations of selection to ocean acidification.
Lohbeck K, Riebesell U, Reusch T
Proc Biol Sci. 2014; 281(1786).
PMID: 24827439
PMC: 4046399.
DOI: 10.1098/rspb.2014.0003.
Difference in physiological responses of growth, photosynthesis and calcification of the coccolithophore Emiliania huxleyi to acidification by acid and CO2 enrichment.
Fukuda S, Suzuki Y, Shiraiwa Y
Photosynth Res. 2014; 121(2-3):299-309.
PMID: 24500605
PMC: 4077257.
DOI: 10.1007/s11120-014-9976-9.
Emiliania huxleyi increases calcification but not expression of calcification-related genes in long-term exposure to elevated temperature and pCO2.
Benner I, Diner R, Lefebvre S, Li D, Komada T, Carpenter E
Philos Trans R Soc Lond B Biol Sci. 2013; 368(1627):20130049.
PMID: 23980248
PMC: 3758179.
DOI: 10.1098/rstb.2013.0049.
Responses of the Emiliania huxleyi proteome to ocean acidification.
Jones B, Iglesias-Rodriguez M, Skipp P, Edwards R, Greaves M, Young J
PLoS One. 2013; 8(4):e61868.
PMID: 23593500
PMC: 3625171.
DOI: 10.1371/journal.pone.0061868.
Ocean acidification affects redox-balance and ion-homeostasis in the life-cycle stages of Emiliania huxleyi.
Rokitta S, John U, Rost B
PLoS One. 2013; 7(12):e52212.
PMID: 23300616
PMC: 3530605.
DOI: 10.1371/journal.pone.0052212.
Identifying reference genes with stable expression from high throughput sequence data.
Alexander H, Jenkins B, Rynearson T, Saito M, Mercier M, Dyhrman S
Front Microbiol. 2012; 3:385.
PMID: 23162540
PMC: 3494082.
DOI: 10.3389/fmicb.2012.00385.