» Articles » PMID: 24389048

Transcriptome Analysis Reveals Novel Players in the Cranial Neural Crest Gene Regulatory Network

Overview
Journal Genome Res
Specialty Genetics
Date 2014 Jan 7
PMID 24389048
Citations 73
Authors
Affiliations
Soon will be listed here.
Abstract

The neural crest is an embryonic stem cell population that gives rise to a multitude of derivatives. In particular, the cranial neural crest (CNC) is unique in its ability to contribute to both facial skeleton and peripheral ganglia. To gain further insight into the molecular underpinnings that distinguish the CNC from other embryonic tissues, we have utilized a CNC-specific enhancer as a tool to isolate a pure, region-specific NC subpopulation for transcriptional profiling. The resulting data set reveals previously unknown transcription factors and signaling pathways that may influence the CNC's ability to migrate and/or differentiate into unique derivatives. To elaborate on the CNC gene regulatory network, we evaluated the effects of knocking down known neural plate border genes and early neural crest specifier genes on selected neural crest-enriched transcripts. The results suggest that ETS1 and SOX9 may act as pan-neural crest regulators of the migratory CNC. Taken together, our analysis provides unprecedented characterization of the migratory CNC transcriptome and identifies new links in the gene regulatory network responsible for development of this critical cell population.

Citing Articles

Expansion of a neural crest gene signature following ectopic MYCN expression in sympathoadrenal lineage cells in vivo.

Ibarra-Garcia-Padilla R, Nambiar A, Hamre T, Singleton E, Uribe R PLoS One. 2024; 19(9):e0310727.

PMID: 39292691 PMC: 11410271. DOI: 10.1371/journal.pone.0310727.


ARID1A-BAF coordinates ZIC2 genomic occupancy for epithelial-to-mesenchymal transition in cranial neural crest specification.

Barnada S, Giner de Gracia A, Morenilla-Palao C, Lopez-Cascales M, Scopa C, Waltrich Jr F Am J Hum Genet. 2024; 111(10):2232-2252.

PMID: 39226899 PMC: 11480806. DOI: 10.1016/j.ajhg.2024.07.022.


Modelling variability and heterogeneity of EMT scenarios highlights nuclear positioning and protrusions as main drivers of extrusion.

Plunder S, Danesin C, Glise B, Ferreira M, Merino-Aceituno S, Theveneau E Nat Commun. 2024; 15(1):7365.

PMID: 39198505 PMC: 11358417. DOI: 10.1038/s41467-024-51372-z.


A time-resolved single-cell roadmap of the logic driving anterior neural crest diversification from neural border to migration stages.

Kotov A, Seal S, Alkobtawi M, Kappes V, Ruiz S, Arbes H Proc Natl Acad Sci U S A. 2024; 121(19):e2311685121.

PMID: 38683994 PMC: 11087755. DOI: 10.1073/pnas.2311685121.


Molecular heterogeneity of quiescent melanocyte stem cells revealed by single-cell RNA-sequencing.

Palmer J, Kumar N, An L, White A, Mukhtar M, Harris M Pigment Cell Melanoma Res. 2024; 37(4):480-495.

PMID: 38613320 PMC: 11178447. DOI: 10.1111/pcmr.13169.


References
1.
Ochoa S, Salvador S, Labonne C . The LIM adaptor protein LMO4 is an essential regulator of neural crest development. Dev Biol. 2011; 361(2):313-25. PMC: 3738297. DOI: 10.1016/j.ydbio.2011.10.034. View

2.
Rada-Iglesias A, Bajpai R, Prescott S, Brugmann S, Swigut T, Wysocka J . Epigenomic annotation of enhancers predicts transcriptional regulators of human neural crest. Cell Stem Cell. 2012; 11(5):633-48. PMC: 3751405. DOI: 10.1016/j.stem.2012.07.006. View

3.
Monsoro-Burq A, Wang E, Harland R . Msx1 and Pax3 cooperate to mediate FGF8 and WNT signals during Xenopus neural crest induction. Dev Cell. 2005; 8(2):167-78. DOI: 10.1016/j.devcel.2004.12.017. View

4.
Sauka-Spengler T, Barembaum M . Gain- and loss-of-function approaches in the chick embryo. Methods Cell Biol. 2008; 87:237-56. DOI: 10.1016/S0091-679X(08)00212-4. View

5.
Ezin A, Fraser S, Bronner-Fraser M . Fate map and morphogenesis of presumptive neural crest and dorsal neural tube. Dev Biol. 2009; 330(2):221-36. PMC: 2717095. DOI: 10.1016/j.ydbio.2009.03.018. View