» Articles » PMID: 24376368

Aromatic Claisen Rearrangements of O-prenylated Tyrosine and Model Prenyl Aryl Ethers: Computational Study of the Role of Water on Acceleration of Claisen Rearrangements

Overview
Specialty Biochemistry
Date 2013 Dec 31
PMID 24376368
Citations 5
Authors
Affiliations
Soon will be listed here.
Abstract

LynF, an enzyme from the TruF family, O-prenylates tyrosines in proteins; subsequent Claisen rearrangements give C-prenylated tyrosine products. These reactions in tyrosines and model phenolic systems have been explored with DFT and SCS-MP2 calculations. Various benchmarks have been computed (CBS-QB3, MP2, SCS-MP2) to examine the accuracy of commonly used density functionals, such as B3LYP and M06-2X. Solvent effects from water were considered using implicit and explicit models. Studies of the -C-prenylation and Claisen rearrangement of tyrosine, and the Claisen rearrangement of α,α-dimethylallyl (prenyl) coumaryl ether establish the energetics of these reactions in the gas phase and in aqueous solution.

Citing Articles

Mechanisms and Dynamics of Synthetic and Biosynthetic Formation of Delitschiapyrones: Solvent Control of Ambimodal Periselectivity.

Zou Y, Houk K J Am Chem Soc. 2021; 143(30):11734-11740.

PMID: 34297552 PMC: 9307257. DOI: 10.1021/jacs.1c05293.


Aromatic Cope rearrangements.

Tomiczek B, Grenning A Org Biomol Chem. 2021; 19(11):2385-2398.

PMID: 33651064 PMC: 9115579. DOI: 10.1039/d1ob00094b.


Computational Investigation of the Mechanism of Diels-Alderase PyrI4.

Zou Y, Yang S, Sanders J, Li W, Yu P, Wang H J Am Chem Soc. 2020; 142(47):20232-20239.

PMID: 33190496 PMC: 9328771. DOI: 10.1021/jacs.0c10813.


Mechanisms of cyanobactin biosynthesis.

Czekster C, Ge Y, Naismith J Curr Opin Chem Biol. 2016; 35:80-88.

PMID: 27639115 PMC: 5164927. DOI: 10.1016/j.cbpa.2016.08.029.


Acceleration of an aromatic Claisen rearrangement via a designed spiroligozyme catalyst that mimics the ketosteroid isomerase catalytic dyad.

Parker M, Osuna S, Bollot G, Vaddypally S, Zdilla M, Houk K J Am Chem Soc. 2014; 136(10):3817-27.

PMID: 24456160 PMC: 4004270. DOI: 10.1021/ja409214c.

References
1.
Lee , Yang , PARR . Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys Rev B Condens Matter. 1988; 37(2):785-789. DOI: 10.1103/physrevb.37.785. View

2.
Ishida T . Effects of point mutation on enzymatic activity: correlation between protein electronic structure and motion in chorismate mutase reaction. J Am Chem Soc. 2010; 132(20):7104-18. DOI: 10.1021/ja100744h. View

3.
Grimme S, Antony J, Ehrlich S, Krieg H . A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J Chem Phys. 2010; 132(15):154104. DOI: 10.1063/1.3382344. View

4.
Hur S, Bruice T . Enzymes do what is expected (chalcone isomerase versus chorismate mutase). J Am Chem Soc. 2003; 125(6):1472-3. DOI: 10.1021/ja0293047. View

5.
Zhao Y, Truhlar D . Density functionals with broad applicability in chemistry. Acc Chem Res. 2008; 41(2):157-67. DOI: 10.1021/ar700111a. View