» Articles » PMID: 24369711

Size-controlled Self-assembly of Superparamagnetic Polymersomes

Overview
Journal ACS Nano
Specialty Biotechnology
Date 2013 Dec 28
PMID 24369711
Citations 18
Authors
Affiliations
Soon will be listed here.
Abstract

We report the size-controlled self-assembly of polymersomes through the cooperative self-assembly of nanoparticles and amphiphilic polymers. Polymersomes densely packed with magnetic nanoparticles in the polymersome membrane (magneto-polymersome) were fabricated with a series of different sized iron oxide nanoparticles. The distribution of nanoparticles in a polymersome membrane was size-dependent; while small nanoparticles were dispersed in a polymer bilayer, large particles formed a well-ordered superstructure at the interface between the inner and outer layer of a bilayer membrane. The yield of magneto-polymersomes increased with increasing the diameter of incorporated nanoparticles. Moreover, the size of the polymersomes was effectively controlled by varying the size of incorporated nanoparticles. This size-dependent self-assembly was attributed to the polymer chain entropy effect and the size-dependent localization of nanoparticles in polymersome bilayers. The transverse relaxation rates (r2) of magneto-polymersomes increased with increasing the nanoparticle diameter and decreasing the size of polymersomes, reaching 555 ± 24 s(-1) mM(-1) for 241 ± 16 nm polymersomes, which is the highest value reported to date for superparamagnetic iron oxide nanoparticles.

Citing Articles

Magnetite Nanoparticle Assemblies and Their Biological Applications: A Review.

Wei J, Xu H, Sun Y, Liu Y, Yan R, Chen Y Molecules. 2024; 29(17).

PMID: 39275008 PMC: 11397167. DOI: 10.3390/molecules29174160.


Dynamic metastable polymersomes enable continuous flow manufacturing.

Wong C, Lai R, Stenzel M Nat Commun. 2023; 14(1):6237.

PMID: 37802997 PMC: 10558441. DOI: 10.1038/s41467-023-41883-6.


Lewis Adduct-Induced Phase Transitions in Polymer/Solvent Mixtures.

Hilaire T, Xu Y, Mei W, Riggleman R, Hickey R ACS Polym Au. 2023; 2(1):35-41.

PMID: 36855742 PMC: 9954274. DOI: 10.1021/acspolymersau.1c00024.


Fate of Antibody-Targeted Ultrasmall Gold Nanoparticles in Cancer Cells after Receptor-Mediated Uptake.

Han S, Zal T, Sokolov K ACS Nano. 2021; 15(6):9495-9508.

PMID: 34011152 PMC: 8223898. DOI: 10.1021/acsnano.0c08128.


Modular Approach to the Functionalization of Polymersomes.

Rijpkema S, Langens S, van der Kolk M, Gavriel K, Toebes B, Wilson D Biomacromolecules. 2020; 21(5):1853-1864.

PMID: 32032491 PMC: 7218747. DOI: 10.1021/acs.biomac.9b01734.


References
1.
Marguet M, Bonduelle C, Lecommandoux S . Multicompartmentalized polymeric systems: towards biomimetic cellular structure and function. Chem Soc Rev. 2012; 42(2):512-29. DOI: 10.1039/c2cs35312a. View

2.
Kroeger A, Li X, Eisenberg A . Dendrimer-influenced supramolecular structure formation of block copolymers. Langmuir. 2007; 23(21):10732-40. DOI: 10.1021/la701334r. View

3.
Ghoroghchian P, Frail P, Susumu K, Blessington D, Brannan A, Bates F . Near-infrared-emissive polymersomes: self-assembled soft matter for in vivo optical imaging. Proc Natl Acad Sci U S A. 2005; 102(8):2922-7. PMC: 549472. DOI: 10.1073/pnas.0409394102. View

4.
Lorenceau E, Utada A, Link D, Cristobal G, Joanicot M, Weitz D . Generation of polymerosomes from double-emulsions. Langmuir. 2005; 21(20):9183-6. DOI: 10.1021/la050797d. View

5.
Hickey R, Meng X, Zhang P, Park S . Low-dimensional nanoparticle clustering in polymer micelles and their transverse relaxivity rates. ACS Nano. 2013; 7(7):5824-33. PMC: 4506779. DOI: 10.1021/nn400824b. View