» Articles » PMID: 24352742

Disease Progression in Autosomal Dominant Cone-rod Dystrophy Caused by a Novel Mutation (D100G) in the GUCA1A Gene

Overview
Journal Doc Ophthalmol
Specialty Ophthalmology
Date 2013 Dec 20
PMID 24352742
Citations 21
Authors
Affiliations
Soon will be listed here.
Abstract

Purpose: To document longitudinal fundus autofluorescence (FAF) and electroretinogram (ERG) findings in a family with cone-rod dystrophy (CRD) caused by a novel missense mutation (D100G) in the GUCA1A gene.

Methods: Observational case series.

Results: Three family members 26-49 years old underwent complete clinical examinations. In all patients, funduscopic findings showed intraretinal pigment migration, loss of neurosensory retinal pigment epithelium, and macular atrophy. FAF imaging revealed the presence of a progressive hyperautofluorescent ring around a hypoautofluorescent center corresponding to macular atrophy. Full-field ERGs showed a more severe loss of cone than rod function in each patient. Thirty-hertz flicker responses fell far below normal limits. Longitudinal FAF and ERG findings in one patient suggested progressive CRD. Two more advanced patients exhibited reduced rod response consistent with disease stage. Direct sequencing of the GUCA1A gene revealed a new missense mutation, p.Asp100Gly (D100G), in each patient.

Conclusion: Patients with autosomal dominant CRD caused by a D100G mutation in GUCA1A exhibit progressive vision loss early within the first decade of life identifiable by distinct ERG characteristics and subsequent genetic testing.

Citing Articles

Structural basis of retinal membrane guanylate cyclase regulation by GCAP1 and RD3.

Ames J Front Mol Neurosci. 2022; 15:988142.

PMID: 36157073 PMC: 9493048. DOI: 10.3389/fnmol.2022.988142.


The Clinical Spectrum and Disease Course of DRAM2 Retinopathy.

Krasovec T, Volk M, Sustar Habjan M, Hawlina M, Vidovic Valentincic N, Fakin A Int J Mol Sci. 2022; 23(13).

PMID: 35806404 PMC: 9266529. DOI: 10.3390/ijms23137398.


Retinal Proteomic Analysis in a Mouse Model of Endotoxin-Induced Uveitis Using Data-Independent Acquisition-Based Mass Spectrometry.

Zhang J, Wu J, Lu D, To C, Lam T, Lin B Int J Mol Sci. 2022; 23(12).

PMID: 35742911 PMC: 9223489. DOI: 10.3390/ijms23126464.


Molecular Properties of Human Guanylate Cyclase-Activating Protein 3 (GCAP3) and Its Possible Association with Retinitis Pigmentosa.

Avesani A, Bielefeld L, Weisschuh N, Marino V, Mazzola P, Stingl K Int J Mol Sci. 2022; 23(6).

PMID: 35328663 PMC: 8948881. DOI: 10.3390/ijms23063240.


Structural Insights into Retinal Guanylate Cyclase Activator Proteins (GCAPs).

Ames J Int J Mol Sci. 2021; 22(16).

PMID: 34445435 PMC: 8395740. DOI: 10.3390/ijms22168731.


References
1.
Perrault I, Rozet J, Gerber S, Ghazi I, Ducroq D, Souied E . Spectrum of retGC1 mutations in Leber's congenital amaurosis. Eur J Hum Genet. 2000; 8(8):578-82. DOI: 10.1038/sj.ejhg.5200503. View

2.
Michaelides M, Wilkie S, Jenkins S, Holder G, Hunt D, Moore A . Mutation in the gene GUCA1A, encoding guanylate cyclase-activating protein 1, causes cone, cone-rod, and macular dystrophy. Ophthalmology. 2005; 112(8):1442-7. DOI: 10.1016/j.ophtha.2005.02.024. View

3.
Gal A, Orth U, Baehr W, Schwinger E, Rosenberg T . Heterozygous missense mutation in the rod cGMP phosphodiesterase beta-subunit gene in autosomal dominant stationary night blindness. Nat Genet. 1994; 7(4):551. DOI: 10.1038/ng0894-551a. View

4.
Kachi S, Nishizawa Y, Olshevskaya E, Yamazaki A, Miyake Y, Wakabayashi T . Detailed localization of photoreceptor guanylate cyclase activating protein-1 and -2 in mammalian retinas using light and electron microscopy. Exp Eye Res. 1999; 68(4):465-73. DOI: 10.1006/exer.1998.0629. View

5.
Tsang S, Tsui I, Chou C, Zernant J, Haamer E, Iranmanesh R . A novel mutation and phenotypes in phosphodiesterase 6 deficiency. Am J Ophthalmol. 2008; 146(5):780-8. PMC: 2593460. DOI: 10.1016/j.ajo.2008.06.017. View