» Articles » PMID: 24335562

An Automatic Service for the Personalization of Ventricular Cardiac Meshes

Overview
Date 2013 Dec 17
PMID 24335562
Citations 29
Authors
Affiliations
Soon will be listed here.
Abstract

Computational cardiac physiology has great potential to improve the management of cardiovascular diseases. One of the main bottlenecks in this field is the customization of the computational model to the anatomical and physiological status of the patient. We present a fully automatic service for the geometrical personalization of cardiac ventricular meshes with high-order interpolation from segmented images. The method is versatile (able to work with different species and disease conditions) and robust (fully automatic results fulfilling accuracy and quality requirements in 87% of 255 cases). Results also illustrate the capability to minimize the impact of segmentation errors, to overcome the sparse resolution of dynamic studies and to remove the sometimes unnecessary anatomical detail of papillary and trabecular structures. The smooth meshes produced can be used to simulate cardiac function, and in particular mechanics, or can be used as diagnostic descriptors of anatomical shape by cardiologists. This fully automatic service is deployed in a cloud infrastructure, and has been made available and accessible to the scientific community.

Citing Articles

Deep learning in 3D cardiac reconstruction: a systematic review of methodologies and dataset.

Pandey R, Rathore Y Med Biol Eng Comput. 2025; .

PMID: 39753994 DOI: 10.1007/s11517-024-03273-y.


Differentiating Left Ventricular Remodeling in Aortic Stenosis From Systemic Hypertension.

Mahmod M, Chan K, Fernandes J, Ariga R, Raman B, Zacur E Circ Cardiovasc Imaging. 2024; 17(8):e016489.

PMID: 39163368 PMC: 11338041. DOI: 10.1161/CIRCIMAGING.123.016489.


Left Atrial Roof Enlargement Is a Distinct Feature of Heart Failure With Preserved Ejection Fraction.

Backhaus S, Nasopoulou A, Lange T, Schulz A, Evertz R, Kowallick J Circ Cardiovasc Imaging. 2024; 17(7):e016424.

PMID: 39012942 PMC: 11251503. DOI: 10.1161/CIRCIMAGING.123.016424.


Interpretable cardiac anatomy modeling using variational mesh autoencoders.

Beetz M, Corral Acero J, Banerjee A, Eitel I, Zacur E, Lange T Front Cardiovasc Med. 2023; 9:983868.

PMID: 36620629 PMC: 9813669. DOI: 10.3389/fcvm.2022.983868.


Left ventricular anatomy in obstructive hypertrophic cardiomyopathy: beyond basal septal hypertrophy.

Hermida U, Stojanovski D, Raman B, Ariga R, Young A, Carapella V Eur Heart J Cardiovasc Imaging. 2022; 24(6):807-818.

PMID: 36441173 PMC: 10229266. DOI: 10.1093/ehjci/jeac233.


References
1.
Lamata P, Roy I, Blazevic B, Crozier A, Land S, Niederer S . Quality metrics for high order meshes: analysis of the mechanical simulation of the heart beat. IEEE Trans Med Imaging. 2012; 32(1):130-8. DOI: 10.1109/TMI.2012.2231094. View

2.
Ecabert O, Peters J, Schramm H, Lorenz C, von Berg J, Walker M . Automatic model-based segmentation of the heart in CT images. IEEE Trans Med Imaging. 2008; 27(9):1189-201. DOI: 10.1109/TMI.2008.918330. View

3.
Fernandez J, Mithraratne P, Thrupp S, Tawhai M, Hunter P . Anatomically based geometric modelling of the musculo-skeletal system and other organs. Biomech Model Mechanobiol. 2003; 2(3):139-55. DOI: 10.1007/s10237-003-0036-1. View

4.
Britten R, Christie G, Little C, Miller A, Bradley C, Wu A . FieldML, a proposed open standard for the Physiome project for mathematical model representation. Med Biol Eng Comput. 2013; 51(11):1191-207. PMC: 3825639. DOI: 10.1007/s11517-013-1097-7. View

5.
Plank G, Burton R, Hales P, Bishop M, Mansoori T, Bernabeu M . Generation of histo-anatomically representative models of the individual heart: tools and application. Philos Trans A Math Phys Eng Sci. 2009; 367(1896):2257-92. PMC: 2881535. DOI: 10.1098/rsta.2009.0056. View