» Articles » PMID: 24323710

Tumor Necrosis Factor-α Modulates Cerebral Aneurysm Formation and Rupture

Overview
Publisher Springer
Date 2013 Dec 11
PMID 24323710
Citations 34
Authors
Affiliations
Soon will be listed here.
Abstract

Inflammation is a critical process behind cerebral aneurysm formation and rupture. Tumor necrosis factor alpha (TNF-α) is a key immune modulator that has been implicated in cerebral aneurysm pathophysiology. This may occur through TNF-α-mediated endothelial injury, smooth muscle cell phenotypic modulation, recruitment of macrophages, activation of chemotactic cytokines, upregulation of matrix remodeling genes, production of free radicals leading to oxidative stress, and ultimately cellular apoptosis. Recent studies have indicated that TNF-α may be a potential target for the development of novel medical therapies, but additional experimental data is needed to clarify the intricacies of TNF-α activation and its critical downstream targets in cerebral aneurysms. This review provides an update on the mechanisms underlying TNF-α-induced molecular modulation in cerebral aneurysms.

Citing Articles

Cardiovascular complications in vascular connective tissue disorders after COVID-19 infection and vaccination.

Guerrerio A, Mateja A, MacCarrick G, Fintzi J, Brittain E, Frischmeyer-Guerrerio P PLoS One. 2024; 19(12):e0315499.

PMID: 39705273 PMC: 11661621. DOI: 10.1371/journal.pone.0315499.


Identification of immune-inflammation targets for intracranial aneurysms: a multiomics and epigenome-wide study integrating summary-data-based Mendelian randomization, single-cell-type expression analysis, and DNA methylation regulation.

Lin P, Lin Z, Wang W, Guo A, Chen Y Int J Surg. 2024; 111(1):346-359.

PMID: 39051921 PMC: 11745758. DOI: 10.1097/JS9.0000000000001990.


Exploring the causal role of immune cells in cerebral aneurysm through single-cell transcriptomics and Mendelian randomization analysis.

Yu Y, Tong S, Liu T, Cai Y, Song Y, Zhou H Clin Exp Immunol. 2024; 217(2):195-203.

PMID: 38661482 PMC: 11239559. DOI: 10.1093/cei/uxae042.


Decoding the Cell Atlas and Inflammatory Features of Human Intracranial Aneurysm Wall by Single-Cell RNA Sequencing.

Ji H, Li Y, Sun H, Chen R, Zhou R, Yang Y J Am Heart Assoc. 2024; 13(5):e032456.

PMID: 38390814 PMC: 10944067. DOI: 10.1161/JAHA.123.032456.


Hemodynamic indicators of the formation of tandem intracranial aneurysm based on a vascular restoration algorithm.

Yao Y, Tong X, Mei Y, Yu F, Shan Y, Liu A Front Neurol. 2022; 13:1010777.

PMID: 36438934 PMC: 9683096. DOI: 10.3389/fneur.2022.1010777.


References
1.
Treska V, Topolcan O, Pecen L . Cytokines as plasma markers of abdominal aortic aneurysm. Clin Chem Lab Med. 2001; 38(11):1161-4. DOI: 10.1515/CCLM.2000.178. View

2.
van Gijn J, Kerr R, Rinkel G . Subarachnoid haemorrhage. Lancet. 2007; 369(9558):306-18. DOI: 10.1016/S0140-6736(07)60153-6. View

3.
Hamano K, Li T, Takahashi M, Kobayashi T, Shirasawa B, Ito H . Enhanced tumor necrosis factor- alpha expression in small sized abdominal aortic aneurysms. World J Surg. 2003; 27(4):476-80. DOI: 10.1007/s00268-002-6690-0. View

4.
Moravan M, Segal B . Treatment of CNS sarcoidosis with infliximab and mycophenolate mofetil. Neurology. 2009; 72(4):337-40. PMC: 2677503. DOI: 10.1212/01.wnl.0000341278.26993.22. View

5.
Kleinbongard P, Heusch G, Schulz R . TNFalpha in atherosclerosis, myocardial ischemia/reperfusion and heart failure. Pharmacol Ther. 2010; 127(3):295-314. DOI: 10.1016/j.pharmthera.2010.05.002. View