Hoper R, Komkova D, Zavrel T, Steuer R
PLoS Comput Biol. 2024; 20(8):e1012280.
PMID: 39102434
PMC: 11326710.
DOI: 10.1371/journal.pcbi.1012280.
Lahlou A, Coghill I, Davidson M, Billon R, Barneche F, Lazar D
Adv Sci (Weinh). 2024; 11(36):e2304420.
PMID: 39081001
PMC: 11423135.
DOI: 10.1002/advs.202304420.
Yi X, Yao H, Fan D, Zhu X, Losciale P, Zhang Y
New Phytol. 2022; 235(2):446-456.
PMID: 35451127
PMC: 9320836.
DOI: 10.1111/nph.18165.
Chow W
Photosynth Res. 2021; 149(1-2):5-24.
PMID: 33543372
DOI: 10.1007/s11120-021-00818-2.
Ware M, Hunstiger D, Cantrell M, Peers G
Plant Physiol. 2020; 183(4):1735-1748.
PMID: 32457091
PMC: 7401117.
DOI: 10.1104/pp.20.00373.
Molecular Mechanism of Oxidation of P700 and Suppression of ROS Production in Photosystem I in Response to Electron-Sink Limitations in C3 Plants.
Miyake C
Antioxidants (Basel). 2020; 9(3).
PMID: 32168828
PMC: 7139980.
DOI: 10.3390/antiox9030230.
Optimal proteome allocation strategies for phototrophic growth in a light-limited chemostat.
Faizi M, Steuer R
Microb Cell Fact. 2019; 18(1):165.
PMID: 31601201
PMC: 6785936.
DOI: 10.1186/s12934-019-1209-7.
A comparative study of wavelength-dependent photoinactivation in photosystem II of drought-tolerant photosynthetic organisms in Antarctica and the potential risks of photoinhibition in the habitat.
Kosugi M, Maruo F, Inoue T, Kurosawa N, Kawamata A, Koike H
Ann Bot. 2018; 122(7):1263-1278.
PMID: 30052754
PMC: 6324753.
DOI: 10.1093/aob/mcy139.
Toward Multiscale Models of Cyanobacterial Growth: A Modular Approach.
Westermark S, Steuer R
Front Bioeng Biotechnol. 2017; 4:95.
PMID: 28083530
PMC: 5183639.
DOI: 10.3389/fbioe.2016.00095.
Multiple roles of oxygen in the photoinactivation and dynamic repair of Photosystem II in spinach leaves.
Fan D, Ye Z, Wang S, Chow W
Photosynth Res. 2015; 127(3):307-19.
PMID: 26297354
DOI: 10.1007/s11120-015-0185-y.
Proteins with high turnover rate in barley leaves estimated by proteome analysis combined with in planta isotope labeling.
Nelson C, Alexova R, Jacoby R, Millar A
Plant Physiol. 2014; 166(1):91-108.
PMID: 25082890
PMC: 4149734.
DOI: 10.1104/pp.114.243014.
Down regulation of photosynthesis in Artabotrys hexapetatus by high light.
Dwivedi U, Sharma M, Bhardwaj R
Photosynth Res. 2013; 46(3):393-7.
PMID: 24301633
DOI: 10.1007/BF00032293.
In search of a reversible stage of photoinhibition in a higher plant: No changes in the amount of functional Photosystem II accompany relaxation of variable fluorescence after exposure of lincomycin-treated Cucurbita pepo leaves to high light.
Vavilin D, Tyystjarvi E, Aro E
Photosynth Res. 2013; 45(3):239-47.
PMID: 24301535
DOI: 10.1007/BF00015564.
Chilling-enhanced photooxidation: The production, action and study of reactive oxygen species produced during chilling in the light.
Wise R
Photosynth Res. 2013; 45(2):79-97.
PMID: 24301474
DOI: 10.1007/BF00032579.
The time course of photoinactivation of photosystem II in leaves revisited.
Kou J, Oguchi R, Fan D, Chow W
Photosynth Res. 2012; 113(1-3):157-64.
PMID: 22644475
DOI: 10.1007/s11120-012-9743-8.
Kinetics of prolonged photoinhibition revisited: photoinhibited Photosystem II centres do not protect the active ones against loss of oxygen evolution.
Sarvikas P, Tyystjarvi T, Tyystjarvi E
Photosynth Res. 2009; 103(1):7-17.
PMID: 19760110
DOI: 10.1007/s11120-009-9496-1.
Modeling the fitness consequences of a cyanophage-encoded photosynthesis gene.
Bragg J, Chisholm S
PLoS One. 2008; 3(10):e3550.
PMID: 18958282
PMC: 2570332.
DOI: 10.1371/journal.pone.0003550.
Mathematical modelling of the light response curve of photoinhibition of photosystem II.
Tyystjarvi E, Hakala M, Sarvikas P
Photosynth Res. 2005; 84(1-3):21-7.
PMID: 16049750
DOI: 10.1007/s11120-004-7174-x.
Increase in the quantum yield of photoinhibition contributes to copper toxicity in vivo .
Patsikka , Aro , Tyystjarvi
Plant Physiol. 1998; 117(2):619-27.
PMID: 9625715
PMC: 34982.
DOI: 10.1104/pp.117.2.619.