» Articles » PMID: 24307815

ANALYSIS OF MULTIVARIATE FAILURE TIME DATA USING MARGINAL PROPORTIONAL HAZARDS MODEL

Overview
Journal Stat Sin
Date 2013 Dec 6
PMID 24307815
Citations 4
Authors
Affiliations
Soon will be listed here.
Abstract

The marginal proportional hazards model is an important tool in the analysis of multivariate failure time data in the presence of censoring. We propose a method of estimation via the linear combinations of martingale residuals. The estimation and inference procedures are easy to implement numerically. The estimation is generally more accurate than the existing pseudo-likelihood approach: the size of efficiency gain can be considerable in some cases, and the maximum relative efficiency in theory is infinite. Consistency and asymptotic normality are established. Empirical evidence in support of the theoretical claims is shown in simulation studies.

Citing Articles

Association Between Nonselective Beta-Blocker Use and Hepatocellular Carcinoma in Patients With Chronic Hepatitis B Without Cirrhosis and Decompensation.

Cheng H, Lin H, Lin H, Uang Y, Keller J, Wang L Front Pharmacol. 2022; 12:805318.

PMID: 35069216 PMC: 8777254. DOI: 10.3389/fphar.2021.805318.


ROBUST MIXED EFFECTS MODEL FOR CLUSTERED FAILURE TIME DATA: APPLICATION TO HUNTINGTON'S DISEASE EVENT MEASURES.

Garcia T, Ma Y, Marder K, Wang Y Ann Appl Stat. 2018; 11(2):1085-1116.

PMID: 29399240 PMC: 5793916. DOI: 10.1214/17-AOAS1038.


Time-varying proportional odds model for mega-analysis of clustered event times.

Garcia T, Marder K, Wang Y Biostatistics. 2018; 20(1):129-146.

PMID: 29309509 PMC: 6402758. DOI: 10.1093/biostatistics/kxx065.


Gaining Efficiency via Weighted Estimators for Multivariate Failure Time Data*.

Fan J, Zhou Y, Cai J, Chen M Sci China Ser A Math. 2010; 52(6):1113-1138.

PMID: 21103020 PMC: 2987660. DOI: 10.1007/s11425-009-0076-9.

References
1.
Clegg L, Cai J, Sen P . A marginal mixed baseline hazards model for multivariate failure time data. Biometrics. 2001; 55(3):805-12. DOI: 10.1111/j.0006-341x.1999.00805.x. View

2.
McGilchrist C, Aisbett C . Regression with frailty in survival analysis. Biometrics. 1991; 47(2):461-6. View

3.
Cai J, Prentice R . Regression estimation using multivariate failure time data and a common baseline hazard function model. Lifetime Data Anal. 1997; 3(3):197-213. DOI: 10.1023/a:1009613313677. View

4.
Hughes M . Power considerations for clinical trials using multivariate time-to-event data. Stat Med. 1997; 16(8):865-82. DOI: 10.1002/(sici)1097-0258(19970430)16:8<865::aid-sim541>3.0.co;2-d. View

5.
Bandeen-Roche K, Ning J . Non-parametric estimation of bivariate failure time associations in the presence of a competing risk. Biometrika. 2010; 95(1):221-232. PMC: 2841410. DOI: 10.1093/biomet/asm091. View