ANALYSIS OF MULTIVARIATE FAILURE TIME DATA USING MARGINAL PROPORTIONAL HAZARDS MODEL
Overview
Authors
Affiliations
The marginal proportional hazards model is an important tool in the analysis of multivariate failure time data in the presence of censoring. We propose a method of estimation via the linear combinations of martingale residuals. The estimation and inference procedures are easy to implement numerically. The estimation is generally more accurate than the existing pseudo-likelihood approach: the size of efficiency gain can be considerable in some cases, and the maximum relative efficiency in theory is infinite. Consistency and asymptotic normality are established. Empirical evidence in support of the theoretical claims is shown in simulation studies.
Cheng H, Lin H, Lin H, Uang Y, Keller J, Wang L Front Pharmacol. 2022; 12:805318.
PMID: 35069216 PMC: 8777254. DOI: 10.3389/fphar.2021.805318.
Garcia T, Ma Y, Marder K, Wang Y Ann Appl Stat. 2018; 11(2):1085-1116.
PMID: 29399240 PMC: 5793916. DOI: 10.1214/17-AOAS1038.
Time-varying proportional odds model for mega-analysis of clustered event times.
Garcia T, Marder K, Wang Y Biostatistics. 2018; 20(1):129-146.
PMID: 29309509 PMC: 6402758. DOI: 10.1093/biostatistics/kxx065.
Gaining Efficiency via Weighted Estimators for Multivariate Failure Time Data*.
Fan J, Zhou Y, Cai J, Chen M Sci China Ser A Math. 2010; 52(6):1113-1138.
PMID: 21103020 PMC: 2987660. DOI: 10.1007/s11425-009-0076-9.