» Articles » PMID: 24305448

Metabolic Myopathies

Overview
Specialty Neurology
Date 2013 Dec 6
PMID 24305448
Citations 4
Authors
Affiliations
Soon will be listed here.
Abstract

Purpose Of Review: The metabolic myopathies result from inborn errors of metabolism affecting intracellular energy production due to defects in glycogen, lipid, adenine nucleotides, and mitochondrial metabolism. This article provides an overview of the most common metabolic myopathies.

Recent Findings: Our knowledge of metabolic myopathies has expanded rapidly in recent years, providing us with major advances in the detection of genetic and biochemical defects. New and improved diagnostic tools are now available for some of these disorders, and targeted therapies for specific biochemical deficits have been developed (ie, enzyme replacement therapy for acid maltase deficiency).

Summary: The diagnostic approach for patients with suspected metabolic myopathy should start with the recognition of a static or dynamic pattern (fixed versus exercise-induced weakness). Individual presentations vary according to age of onset and the severity of each particular biochemical dysfunction. Additional clinical clues include the presence of multisystem disease, family history, and laboratory characteristics. Appropriate investigations, timely treatment, and genetic counseling are discussed for the most common conditions.

Citing Articles

Metabolic Myopathies in the Era of Next-Generation Sequencing.

Urtizberea J, Severa G, Malfatti E Genes (Basel). 2023; 14(5).

PMID: 37239314 PMC: 10217901. DOI: 10.3390/genes14050954.


Pigment Nephropathy in a Patient With  Gene Mutation.

Mamidi V, E I, Shekar M, Elumalai R, Krishna Makkena V, Chakola J Kidney Int Rep. 2019; 4(5):740-744.

PMID: 31080931 PMC: 6506694. DOI: 10.1016/j.ekir.2019.01.010.


Feeding and Swallowing Disorders in Pediatric Neuromuscular Diseases: An Overview.

van den Engel-Hoek L, de Groot I, Swart B, Erasmus C J Neuromuscul Dis. 2016; 2(4):357-369.

PMID: 27858755 PMC: 5240596. DOI: 10.3233/JND-150122.


Normal muscle structure, growth, development, and regeneration.

Pinto W, Souza P, Oliveira A Curr Rev Musculoskelet Med. 2015; 8(2):176-81.

PMID: 25860794 PMC: 4596171. DOI: 10.1007/s12178-015-9267-x.

References
1.
Massa R, Bruno C, Martorana A, De Stefano N, van Diggelen O, Federico A . Adult polyglucosan body disease: proton magnetic resonance spectroscopy of the brain and novel mutation in the GBE1 gene. Muscle Nerve. 2007; 37(4):530-6. DOI: 10.1002/mus.20916. View

2.
Pfeffer G, Chinnery P . Diagnosis and treatment of mitochondrial myopathies. Ann Med. 2011; 45(1):4-16. PMC: 3581062. DOI: 10.3109/07853890.2011.605389. View

3.
Echaniz-Laguna A, Akman H, Mohr M, Tranchant C, Talmant-Verbist V, Rolland M . Muscle phosphorylase b kinase deficiency revisited. Neuromuscul Disord. 2010; 20(2):125-7. DOI: 10.1016/j.nmd.2009.11.004. View

4.
Martinuzzi A, Sartori E, Fanin M, Nascimbeni A, Valente L, Angelini C . Phenotype modulators in myophosphorylase deficiency. Ann Neurol. 2003; 53(4):497-502. DOI: 10.1002/ana.10499. View

5.
van der Ploeg A, Clemens P, Corzo D, Escolar D, Florence J, Groeneveld G . A randomized study of alglucosidase alfa in late-onset Pompe's disease. N Engl J Med. 2010; 362(15):1396-406. DOI: 10.1056/NEJMoa0909859. View