» Articles » PMID: 24305146

North Atlantic Warming and the Retreat of Greenland's Outlet Glaciers

Overview
Journal Nature
Specialty Science
Date 2013 Dec 6
PMID 24305146
Citations 35
Authors
Affiliations
Soon will be listed here.
Abstract

Mass loss from the Greenland ice sheet quadrupled over the past two decades, contributing a quarter of the observed global sea-level rise. Increased submarine melting is thought to have triggered the retreat of Greenland's outlet glaciers, which is partly responsible for the ice loss. However, the chain of events and physical processes remain elusive. Recent evidence suggests that an anomalous inflow of subtropical waters driven by atmospheric changes, multidecadal natural ocean variability and a long-term increase in the North Atlantic's upper ocean heat content since the 1950s all contributed to a warming of the subpolar North Atlantic. This led, in conjunction with increased runoff, to enhanced submarine glacier melting. Future climate projections raise the potential for continued increases in warming and ice-mass loss, with implications for sea level and climate.

Citing Articles

Heterogeneous impacts of ocean thermal forcing on ice discharge from Greenland's peripheral tidewater glaciers over 2000-2021.

Moller M, Recinos B, Rastner P, Marzeion B Sci Rep. 2024; 14(1):11316.

PMID: 38760481 PMC: 11101662. DOI: 10.1038/s41598-024-61930-6.


Contrasting internally and externally generated Atlantic Multidecadal Variability and the role for AMOC in CMIP6 historical simulations.

Robson J, Sutton R, Menary M, Lai M Philos Trans A Math Phys Eng Sci. 2023; 381(2262):20220194.

PMID: 37866382 PMC: 10590668. DOI: 10.1098/rsta.2022.0194.


Atlantic water intrusion triggers rapid retreat and regime change at previously stable Greenland glacier.

Chudley T, Howat I, King M, Negrete A Nat Commun. 2023; 14(1):2151.

PMID: 37076489 PMC: 10115864. DOI: 10.1038/s41467-023-37764-7.


Vertical redistribution of principle water masses on the Northeast Greenland Shelf.

Gjelstrup C, Sejr M, de Steur L, Christiansen J, Granskog M, Koch B Nat Commun. 2022; 13(1):7660.

PMID: 36496498 PMC: 9741604. DOI: 10.1038/s41467-022-35413-z.


Are Natural or Anthropogenic Factors Influencing Potentially Toxic Elements' Enrichment in Soils in Proglacial Zones? An Example from Kaffiøyra (Oscar II Land, Spitsbergen).

Kowalska J, Nicia P, Gasiorek M, Zadrozny P, Wegrzyn M, Waroszewski J Int J Environ Res Public Health. 2022; 19(20).

PMID: 36294277 PMC: 9603001. DOI: 10.3390/ijerph192013703.


References
1.
Price S, Payne A, Howat I, Smith B . Committed sea-level rise for the next century from Greenland ice sheet dynamics during the past decade. Proc Natl Acad Sci U S A. 2011; 108(22):8978-83. PMC: 3107304. DOI: 10.1073/pnas.1017313108. View

2.
Moon T, Joughin I, Smith B, Howat I . 21st-century evolution of Greenland outlet glacier velocities. Science. 2012; 336(6081):576-8. DOI: 10.1126/science.1219985. View

3.
Joughin I, Alley R, Holland D . Ice-sheet response to oceanic forcing. Science. 2012; 338(6111):1172-6. DOI: 10.1126/science.1226481. View

4.
van den Broeke M, Bamber J, Ettema J, Rignot E, Schrama E, van de Berg W . Partitioning recent Greenland mass loss. Science. 2009; 326(5955):984-6. DOI: 10.1126/science.1178176. View

5.
Pritchard H, Arthern R, Vaughan D, Edwards L . Extensive dynamic thinning on the margins of the Greenland and Antarctic ice sheets. Nature. 2009; 461(7266):971-5. DOI: 10.1038/nature08471. View