» Articles » PMID: 24288443

Alteration of Energy Substrates and ROS Production in Diabetic Cardiomyopathy

Overview
Publisher Wiley
Specialties Biochemistry
Pathology
Date 2013 Nov 30
PMID 24288443
Citations 35
Authors
Affiliations
Soon will be listed here.
Abstract

Diabetic cardiomyopathy is initiated by alterations in energy substrates. Despite excess of plasma glucose and lipids, the diabetic heart almost exclusively depends on fatty acid degradation. Glycolytic enzymes and transporters are impaired by fatty acid metabolism, leading to accumulation of glucose derivatives. However, fatty acid oxidation yields lower ATP production per mole of oxygen than glucose, causing mitochondrial uncoupling and decreased energy efficiency. In addition, the oxidation of fatty acids can saturate and cause their deposition in the cytosol, where they deviate to induce toxic metabolites or gene expression by nuclear-receptor interaction. Hyperglycemia, the fatty acid oxidation pathway, and the cytosolic storage of fatty acid and glucose/fatty acid derivatives are major inducers of reactive oxygen species. However, the presence of these species can be essential for physiological responses in the diabetic myocardium.

Citing Articles

Therapeutic Targeting of Decr1 Ameliorates Cardiomyopathy by Suppressing Mitochondrial Fatty Acid Oxidation in Diabetic Mice.

Lu Q, Sun H, Zhou K, Su J, Meng X, Chen G J Cachexia Sarcopenia Muscle. 2025; 16(2):e13761.

PMID: 40052435 PMC: 11886612. DOI: 10.1002/jcsm.13761.


Non-coding RNAs affecting NLRP3 inflammasome pathway in diabetic cardiomyopathy: a comprehensive review of potential therapeutic options.

Radmehr E, Yazdanpanah N, Rezaei N J Transl Med. 2025; 23(1):249.

PMID: 40022088 PMC: 11871836. DOI: 10.1186/s12967-025-06269-w.


Krüpple-like factors in cardiomyopathy: emerging player and therapeutic opportunities.

Gui L, Liu H, Jin L, Peng X Front Cardiovasc Med. 2024; 11:1342173.

PMID: 38516000 PMC: 10955087. DOI: 10.3389/fcvm.2024.1342173.


Potential Role of the mTORC1-PGC1α-PPARα Axis under Type-II Diabetes and Hypertension in the Human Heart.

Hang T, Lumpuy-Castillo J, Goikoetxea-Usandizaga N, Azkargorta M, Aldamiz G, Martinez-Milla J Int J Mol Sci. 2023; 24(10).

PMID: 37239977 PMC: 10218005. DOI: 10.3390/ijms24108629.


Diabetic cardiomyopathy: a brief summary on lipid toxicity.

Ke J, Pan J, Lin H, Gu J ESC Heart Fail. 2022; 10(2):776-790.

PMID: 36369594 PMC: 10053269. DOI: 10.1002/ehf2.14224.


References
1.
Johar S, Cave A, Narayanapanicker A, Grieve D, Shah A . Aldosterone mediates angiotensin II-induced interstitial cardiac fibrosis via a Nox2-containing NADPH oxidase. FASEB J. 2006; 20(9):1546-8. DOI: 10.1096/fj.05-4642fje. View

2.
Kotlo K, Johnson K, Grillon J, Geenen D, Pieter Detombe , Danziger R . Phosphoprotein abundance changes in hypertensive cardiac remodeling. J Proteomics. 2012; 77:1-13. PMC: 3581302. DOI: 10.1016/j.jprot.2012.05.041. View

3.
Xie N, Zhang W, Li J, Liang H, Zhou H, Duan W . α-Linolenic acid intake attenuates myocardial ischemia/reperfusion injury through anti-inflammatory and anti-oxidative stress effects in diabetic but not normal rats. Arch Med Res. 2011; 42(3):171-81. DOI: 10.1016/j.arcmed.2011.04.008. View

4.
Dong B, Qi D, Yang L, Huang Y, Xiao X, Tai N . TLR4 regulates cardiac lipid accumulation and diabetic heart disease in the nonobese diabetic mouse model of type 1 diabetes. Am J Physiol Heart Circ Physiol. 2012; 303(6):H732-42. PMC: 3468457. DOI: 10.1152/ajpheart.00948.2011. View

5.
Braz J, Gregory K, Pathak A, Zhao W, Sahin B, Klevitsky R . PKC-alpha regulates cardiac contractility and propensity toward heart failure. Nat Med. 2004; 10(3):248-54. DOI: 10.1038/nm1000. View