» Articles » PMID: 24288334

Phycobilisomes Supply Excitations to Both Photosystems in a Megacomplex in Cyanobacteria

Overview
Journal Science
Specialty Science
Date 2013 Nov 30
PMID 24288334
Citations 129
Authors
Affiliations
Soon will be listed here.
Abstract

In photosynthetic organisms, photons are captured by light-harvesting antenna complexes, and energy is transferred to reaction centers where photochemical reactions take place. We describe here the isolation and characterization of a fully functional megacomplex composed of a phycobilisome antenna complex and photosystems I and II from the cyanobacterium Synechocystis PCC 6803. A combination of in vivo protein cross-linking, mass spectrometry, and time-resolved spectroscopy indicates that the megacomplex is organized to facilitate energy transfer but not intercomplex electron transfer, which requires diffusible intermediates and the cytochrome b6f complex. The organization provides a basis for understanding how phycobilisomes transfer excitation energy to reaction centers and how the energy balance of two photosystems is achieved, allowing the organism to adapt to varying ecophysiological conditions.

Citing Articles

Far-red light-driven photoautotrophy of chlorophyll f-producing cyanobacterium without red-shifted phycobilisome core complex.

Huang D, Wei T, Chen M, Chen S, Wu J, Zhang L Photosynth Res. 2025; 163(2):22.

PMID: 40064749 DOI: 10.1007/s11120-025-01143-8.


Molecular glue for phycobilisome attachment to photosystem II in sp. PCC 7002.

Zheng Z, Li X, Wei P, Zhang X, Zhang T, Zhang Z Proc Natl Acad Sci U S A. 2025; 122(4):e2415222122.

PMID: 39847327 PMC: 11789067. DOI: 10.1073/pnas.2415222122.


In situ structural determination of cyanobacterial phycobilisome-PSII supercomplex by STAgSPA strategy.

Zhang X, Xiao Y, You X, Sun S, Sui S Nat Commun. 2024; 15(1):7201.

PMID: 39169020 PMC: 11339077. DOI: 10.1038/s41467-024-51460-0.


Limiting factors in the operation of photosystems I and II in cyanobacteria.

Grettenberger C, Abou-Shanab R, Hamilton T Microb Biotechnol. 2024; 17(8):e14519.

PMID: 39101352 PMC: 11298993. DOI: 10.1111/1751-7915.14519.


Growth phase-dependent reorganization of cryptophyte photosystem I antennae.

Zhang S, Si L, Su X, Zhao X, An X, Li M Commun Biol. 2024; 7(1):560.

PMID: 38734819 PMC: 11088674. DOI: 10.1038/s42003-024-06268-5.


References
1.
Yokono M, Murakami A, Akimoto S . Excitation energy transfer between photosystem II and photosystem I in red algae: larger amounts of phycobilisome enhance spillover. Biochim Biophys Acta. 2011; 1807(7):847-53. DOI: 10.1016/j.bbabio.2011.03.014. View

2.
Capuano V, Braux A, de Marsac N, Houmard J . The "anchor polypeptide" of cyanobacterial phycobilisomes. Molecular characterization of the Synechococcus sp. PCC 6301 apce gene. J Biol Chem. 1991; 266(11):7239-47. View

3.
Ajlani G, Vernotte C . Deletion of the PB-loop in the L(CM) subunit does not affect phycobilisome assembly or energy transfer functions in the cyanobacterium Synechocystis sp. PCC6714. Eur J Biochem. 1998; 257(1):154-9. DOI: 10.1046/j.1432-1327.1998.2570154.x. View

4.
Gantt E, Conti S . Phycobiliprotein localization in algae. Brookhaven Symp Biol. 1966; 19:393-405. View

5.
Petrotchenko E, Borchers C . Crosslinking combined with mass spectrometry for structural proteomics. Mass Spectrom Rev. 2010; 29(6):862-76. DOI: 10.1002/mas.20293. View