» Articles » PMID: 24275011

Brain Region-specific Methylation in the Promoter of the Murine Oxytocin Receptor Gene is Involved in Its Expression Regulation

Overview
Date 2013 Nov 27
PMID 24275011
Citations 29
Authors
Affiliations
Soon will be listed here.
Abstract

Oxytocin is a nine amino acid neuropeptide that is known to play a critical role in fetal expulsion and breast-feeding, and has been recently implicated in mammalian social behavior. The actions of both central and peripheral oxytocin are mediated through the oxytocin receptor (Oxtr), which is encoded by a single gene. In contrast to the highly conserved expression of oxytocin in specific hypothalamic nuclei, the expression of its receptor in the brain is highly diverse among different mammalian species or even within individuals of the same species. The diversity in the pattern of brain Oxtr expression among mammals is thought to contribute to the broad range of social systems and organizations. Yet, the mechanisms underlying this diversity are poorly understood. DNA methylation is a major epigenetic mechanism that regulates gene transcription, and has been linked to reduced expression levels of the Oxtr in individuals with autism. Here we hypothesize that DNA methylation is involved in the expression regulation of Oxtr in the mouse brain. By combining bisulfite DNA conversion and Next-Generation Sequencing we found that specific CpG sites are differentially methylated between distinct brain regions expressing different levels of Oxtr mRNA. Some of these CpG sites are located within putative binding sites of transcription factors known to regulate Oxtr expression, including estrogen receptor α (ERα) and SP1. Specifically, methylation of the SP1 site was found to positively correlate with Oxtr expression. Furthermore, we revealed that the methylation levels of these sites in the various brain regions predict the relationship between ERα and Oxtr mRNA levels. Collectively, our results suggest that brain region-specific expression of the mouse Oxtr gene is epigenetically regulated by DNA methylation of its promoter.

Citing Articles

Behavioral convergence in defense behaviors in pair bonded individuals correlates with neuroendocrine receptors in the medial amygdala.

Malone C, Rieger N, Spool J, Payette A, Riters L, Marler C Behav Brain Res. 2023; 452:114556.

PMID: 37356669 PMC: 10644349. DOI: 10.1016/j.bbr.2023.114556.


Intertwined associations between oxytocin, immune system and major depressive disorder.

Jiang J, Yang M, Tian M, Chen Z, Xiao L, Gong Y Biomed Pharmacother. 2023; 163:114852.

PMID: 37163778 PMC: 10165244. DOI: 10.1016/j.biopha.2023.114852.


Oxytocin Receptor in Cerebellar Purkinje Cells Does Not Engage in Autism-Related Behaviors.

Shen L, Li W, Pei L, Yin J, Xie S, Li H Cerebellum. 2022; 22(5):888-904.

PMID: 36040660 DOI: 10.1007/s12311-022-01466-5.


An epigenetic rheostat of experience: DNA methylation of as a mechanism of early life allostasis.

Danoff J, Connelly J, Morris J, Perkeybile A Compr Psychoneuroendocrinol. 2022; 8:100098.

PMID: 35757665 PMC: 9216658. DOI: 10.1016/j.cpnec.2021.100098.


Oxytocin receptor gene methylation as a molecular marker for severity of depressive symptoms in affective disorder patients.

Ludwig B, Carlberg L, Kienesberger K, Swoboda P, Swoboda M, Bernegger A BMC Psychiatry. 2022; 22(1):381.

PMID: 35672748 PMC: 9172116. DOI: 10.1186/s12888-022-04031-w.