» Articles » PMID: 24267514

Modulation of Host Signaling and Cellular Responses by Chlamydia

Overview
Publisher Biomed Central
Date 2013 Nov 26
PMID 24267514
Citations 13
Authors
Affiliations
Soon will be listed here.
Abstract

Modulation of host cell signaling and cellular functions is key to intracellular survival of pathogenic bacteria. Intracellular growth has several advantages e.g. escape from the humoral immune response and access to a stable nutrient rich environment. Growth in such a preferred niche comes at the price of an ongoing competition between the bacteria and the host as well as other microbes that compete for the very same host resources. This requires specialization and constant evolution of dedicated systems for adhesion, invasion and accommodation. Interestingly, obligate intracellular bacteria of the order Chlamydiales have evolved an impressive degree of control over several important host cell functions. In this review we summarize how Chlamydia controls its host cell with a special focus on signal transduction and cellular modulation.

Citing Articles

Insights into Chlamydia Development and Host Cells Response.

Yang S, Zeng J, Yu J, Sun R, Tuo Y, Bai H Microorganisms. 2024; 12(7).

PMID: 39065071 PMC: 11279054. DOI: 10.3390/microorganisms12071302.


Unveiling the stealthy tactics: mycoplasma's immune evasion strategies.

Wang J, Liang K, Chen L, Su X, Liao D, Yu J Front Cell Infect Microbiol. 2023; 13:1247182.

PMID: 37719671 PMC: 10502178. DOI: 10.3389/fcimb.2023.1247182.


Polymorphic Membrane Protein 17G of Mediated the Binding and Invasion of Bacteria to Host Cells by Interacting and Activating EGFR of the Host.

Li X, Zuo Z, Wang Y, Hegemann J, He C Front Immunol. 2022; 12:818487.

PMID: 35173712 PMC: 8841347. DOI: 10.3389/fimmu.2021.818487.


Immune Gene Expression Covaries with Gut Microbiome Composition in Stickleback.

Fuess L, den Haan S, Ling F, Weber J, Steinel N, Bolnick D mBio. 2021; 12(3).

PMID: 33947750 PMC: 8262870. DOI: 10.1128/mBio.00145-21.


Generation of a novel affibody molecule targeting Chlamydia trachomatis MOMP.

Li M, Shi W, Yang J, Wang Q, Dong H, Chen J Appl Microbiol Biotechnol. 2021; 105(4):1477-1487.

PMID: 33521848 PMC: 7880956. DOI: 10.1007/s00253-021-11128-x.


References
1.
Alzhanov D, Barnes J, Hruby D, Rockey D . Chlamydial development is blocked in host cells transfected with Chlamydophila caviae incA. BMC Microbiol. 2004; 4:24. PMC: 459217. DOI: 10.1186/1471-2180-4-24. View

2.
Mehlitz A, Banhart S, Hess S, Selbach M, Meyer T . Complex kinase requirements for Chlamydia trachomatis Tarp phosphorylation. FEMS Microbiol Lett. 2008; 289(2):233-40. DOI: 10.1111/j.1574-6968.2008.01390.x. View

3.
Delevoye C, Nilges M, Dautry-Varsat A, Subtil A . Conservation of the biochemical properties of IncA from Chlamydia trachomatis and Chlamydia caviae: oligomerization of IncA mediates interaction between facing membranes. J Biol Chem. 2004; 279(45):46896-906. DOI: 10.1074/jbc.M407227200. View

4.
Hower S, Wolf K, Fields K . Evidence that CT694 is a novel Chlamydia trachomatis T3S substrate capable of functioning during invasion or early cycle development. Mol Microbiol. 2009; 72(6):1423-37. PMC: 2997736. DOI: 10.1111/j.1365-2958.2009.06732.x. View

5.
Rejman Lipinski A, Heymann J, Meissner C, Karlas A, Brinkmann V, Meyer T . Rab6 and Rab11 regulate Chlamydia trachomatis development and golgin-84-dependent Golgi fragmentation. PLoS Pathog. 2009; 5(10):e1000615. PMC: 2752117. DOI: 10.1371/journal.ppat.1000615. View