Buijsers B, Garsen M, de Graaf M, Bebber M, Guo C, Li X
Front Pharmacol. 2023; 14:1098184.
PMID: 37180718
PMC: 10172501.
DOI: 10.3389/fphar.2023.1098184.
Kines R, Schiller J
Viruses. 2022; 14(8).
PMID: 36016277
PMC: 9413966.
DOI: 10.3390/v14081656.
Chhabra M, Wilson J, Wu L, Davies G, Gandhi N, Ferro V
Chemistry. 2022; 28(11):e202104222.
PMID: 34981584
PMC: 9303737.
DOI: 10.1002/chem.202104222.
Koliesnik I, Kuipers H, Medina C, Zihsler S, Liu D, van Belleghem J
Front Immunol. 2020; 11:132.
PMID: 32117279
PMC: 7015948.
DOI: 10.3389/fimmu.2020.00132.
Pierson E, Haufroid M, Gosain T, Chopra P, Singh R, Wouters J
Molecules. 2020; 25(2).
PMID: 31963843
PMC: 7024313.
DOI: 10.3390/molecules25020415.
Heparanase: A Challenging Cancer Drug Target.
Coombe D, Gandhi N
Front Oncol. 2019; 9:1316.
PMID: 31850210
PMC: 6892829.
DOI: 10.3389/fonc.2019.01316.
Leukocyte Heparanase: A Double-Edged Sword in Tumor Progression.
Mayfosh A, Baschuk N, Hulett M
Front Oncol. 2019; 9:331.
PMID: 31110966
PMC: 6501466.
DOI: 10.3389/fonc.2019.00331.
Targeting Heparanase in Cancer: Inhibition by Synthetic, Chemically Modified, and Natural Compounds.
Mohan C, Hari S, Preetham H, Rangappa S, Barash U, Ilan N
iScience. 2019; 15:360-390.
PMID: 31103854
PMC: 6548846.
DOI: 10.1016/j.isci.2019.04.034.
Glycosaminoglycans and Glycosaminoglycan Mimetics in Cancer and Inflammation.
Morla S
Int J Mol Sci. 2019; 20(8).
PMID: 31013618
PMC: 6514582.
DOI: 10.3390/ijms20081963.
Immunomodulatory activities of pixatimod: emerging nonclinical and clinical data, and its potential utility in combination with PD-1 inhibitors.
Hammond E, Haynes N, Cullinane C, Brennan T, Bampton D, Handley P
J Immunother Cancer. 2018; 6(1):54.
PMID: 29898788
PMC: 6000956.
DOI: 10.1186/s40425-018-0363-5.
Heparin Mimetics: Their Therapeutic Potential.
Mohamed S, Coombe D
Pharmaceuticals (Basel). 2017; 10(4).
PMID: 28974047
PMC: 5748635.
DOI: 10.3390/ph10040078.
Involvement of heparanase in the pathogenesis of acute kidney injury: nephroprotective effect of PG545.
Abassi Z, Hamoud S, Hassan A, Khamaysi I, Nativ O, Heyman S
Oncotarget. 2017; 8(21):34191-34204.
PMID: 28388547
PMC: 5470960.
DOI: 10.18632/oncotarget.16573.
Kinetic analysis and molecular modeling of the inhibition mechanism of roneparstat (SST0001) on human heparanase.
Pala D, Rivara S, Mor M, Milazzo F, Roscilli G, Pavoni E
Glycobiology. 2016; 26(6):640-54.
PMID: 26762172
PMC: 4847616.
DOI: 10.1093/glycob/cww003.
Heparan sulfate mimetic PG545-mediated antilymphoma effects require TLR9-dependent NK cell activation.
Brennan T, Lin L, Brandstadter J, Rendell V, Dredge K, Huang X
J Clin Invest. 2015; 126(1):207-19.
PMID: 26649979
PMC: 4701545.
DOI: 10.1172/JCI76566.
Structural characterization of human heparanase reveals insights into substrate recognition.
Wu L, Viola C, Brzozowski A, Davies G
Nat Struct Mol Biol. 2015; 22(12):1016-22.
PMID: 26575439
PMC: 5008439.
DOI: 10.1038/nsmb.3136.
Molecular and clinical profiles of syndecan-1 in solid and hematological cancer for prognosis and precision medicine.
Akl M, Nagpal P, Ayoub N, Prabhu S, Gliksman M, Tai B
Oncotarget. 2015; 6(30):28693-715.
PMID: 26293675
PMC: 4745686.
DOI: 10.18632/oncotarget.4981.
The tumour microenvironment after radiotherapy: mechanisms of resistance and recurrence.
Barker H, Paget J, Khan A, Harrington K
Nat Rev Cancer. 2015; 15(7):409-25.
PMID: 26105538
PMC: 4896389.
DOI: 10.1038/nrc3958.
PG545 enhances anti-cancer activity of chemotherapy in ovarian models and increases surrogate biomarkers such as VEGF in preclinical and clinical plasma samples.
Winterhoff B, Freyer L, Hammond E, Giri S, Mondal S, Roy D
Eur J Cancer. 2015; 51(7):879-892.
PMID: 25754234
PMC: 4402130.
DOI: 10.1016/j.ejca.2015.02.007.
The Role of Heparanase and Sulfatases in the Modification of Heparan Sulfate Proteoglycans within the Tumor Microenvironment and Opportunities for Novel Cancer Therapeutics.
Hammond E, Khurana A, Shridhar V, Dredge K
Front Oncol. 2014; 4:195.
PMID: 25105093
PMC: 4109498.
DOI: 10.3389/fonc.2014.00195.