» Articles » PMID: 24243114

Mg(2+)-induced Conformational Changes in the BtuB Riboswitch from E. Coli

Overview
Journal RNA
Specialty Molecular Biology
Date 2013 Nov 19
PMID 24243114
Citations 11
Authors
Affiliations
Soon will be listed here.
Abstract

Mg(2+) has been shown to modulate the function of riboswitches by facilitating the ligand-riboswitch interactions. The btuB riboswitch from Escherichia coli undergoes a conformational change upon binding to its ligand, coenzyme B12 (adenosyl-cobalamine, AdoCbl), and down-regulates the expression of the B12 transporter protein BtuB in order to control the cellular levels of AdoCbl. Here, we discuss the structural folding attained by the btuB riboswitch from E. coli in response to Mg(2+) and how it affects the ligand binding competent conformation of the RNA. The btuB riboswitch notably adopts different conformational states depending upon the concentration of Mg(2+). With the help of in-line probing, we show the existence of at least two specific conformations, one being achieved in the complete absence of Mg(2+) (or low Mg(2+) concentration) and the other appearing above ∼0.5 mM Mg(2+). Distinct regions of the riboswitch exhibit different dissociation constants toward Mg(2+), indicating a stepwise folding of the btuB RNA. Increasing the Mg(2+) concentration drives the transition from one conformation toward the other. The conformational state existing above 0.5 mM Mg(2+) defines the binding competent conformation of the btuB riboswitch which can productively interact with the ligand, coenzyme B12, and switch the RNA conformation. Moreover, raising the Mg(2+) concentration enhances the ratio of switched RNA in the presence of AdoCbl. The lack of a AdoCbl-induced conformational switch experienced by the btuB riboswitch in the absence of Mg(2+) indicates a crucial role played by Mg(2+) for defining an active conformation of the riboswitch.

Citing Articles

Structural and dynamic mechanisms for coupled folding and tRNA recognition of a translational T-box riboswitch.

Niu X, Xu Z, Zhang Y, Zuo X, Chen C, Fang X Nat Commun. 2023; 14(1):7394.

PMID: 37968328 PMC: 10651847. DOI: 10.1038/s41467-023-43232-z.


Context-dependence of T-loop Mediated Long-range RNA Tertiary Interactions.

Hansen L, Kletzien O, Urquijo M, Schwanz L, Batey R J Mol Biol. 2023; 435(10):168070.

PMID: 37003469 PMC: 10152882. DOI: 10.1016/j.jmb.2023.168070.


Visualizing RNA conformational and architectural heterogeneity in solution.

Ding J, Lee Y, Bhandari Y, Schwieters C, Fan L, Yu P Nat Commun. 2023; 14(1):714.

PMID: 36759615 PMC: 9911696. DOI: 10.1038/s41467-023-36184-x.


Structural insights into translation regulation by the THF-II riboswitch.

Xu L, Xiao Y, Zhang J, Fang X Nucleic Acids Res. 2023; 51(2):952-965.

PMID: 36620887 PMC: 9881143. DOI: 10.1093/nar/gkac1257.


Regulation of Gene Expression Through Effector-dependent Conformational Switching by Cobalamin Riboswitches.

Lennon S, Batey R J Mol Biol. 2022; 434(18):167585.

PMID: 35427633 PMC: 9474592. DOI: 10.1016/j.jmb.2022.167585.


References
1.
Cole P, Yang S, Crothers D . Conformational changes of transfer ribonucleic acid. Equilibrium phase diagrams. Biochemistry. 1972; 11(23):4358-68. DOI: 10.1021/bi00773a024. View

2.
Winkler W, Breaker R . Genetic control by metabolite-binding riboswitches. Chembiochem. 2003; 4(10):1024-32. DOI: 10.1002/cbic.200300685. View

3.
Buck J, Noeske J, Wohnert J, Schwalbe H . Dissecting the influence of Mg2+ on 3D architecture and ligand-binding of the guanine-sensing riboswitch aptamer domain. Nucleic Acids Res. 2010; 38(12):4143-53. PMC: 2896527. DOI: 10.1093/nar/gkq138. View

4.
Winkler W, Nahvi A, Roth A, Collins J, Breaker R . Control of gene expression by a natural metabolite-responsive ribozyme. Nature. 2004; 428(6980):281-6. DOI: 10.1038/nature02362. View

5.
Harris D, Walter N . Probing RNA structure and metal-binding sites using terbium(III) footprinting. Curr Protoc Nucleic Acid Chem. 2008; Chapter 6:Unit 6.8. DOI: 10.1002/0471142700.nc0608s13. View