Eisner D, Neher E, Taschenberger H, Smith G
Physiol Rev. 2023; 103(4):2767-2845.
PMID: 37326298
PMC: 11550887.
DOI: 10.1152/physrev.00042.2022.
van Westen R, Poppinga J, Arazola R, Toonen R, Verhage M
Proc Natl Acad Sci U S A. 2021; 118(18).
PMID: 33903230
PMC: 8106342.
DOI: 10.1073/pnas.2012137118.
Hawrysh P, Buck L
J Neurophysiol. 2019; 122(2):466-479.
PMID: 31141433
PMC: 6734405.
DOI: 10.1152/jn.00104.2019.
Jensen T, Zheng K, Cole N, Marvin J, Looger L, Rusakov D
Nat Commun. 2019; 10(1):1414.
PMID: 30926781
PMC: 6441074.
DOI: 10.1038/s41467-019-09216-8.
Panzera L, Hoppa M
Front Cell Neurosci. 2019; 13:52.
PMID: 30881287
PMC: 6406964.
DOI: 10.3389/fncel.2019.00052.
Subcellular control of membrane excitability in the axon.
Alpizar S, Cho I, Hoppa M
Curr Opin Neurobiol. 2019; 57:117-125.
PMID: 30784979
PMC: 6919308.
DOI: 10.1016/j.conb.2019.01.020.
Pool size estimations for dense-core vesicles in mammalian CNS neurons.
Persoon C, Moro A, Nassal J, Farina M, Broeke J, Arora S
EMBO J. 2018; 37(20).
PMID: 30185408
PMC: 6187028.
DOI: 10.15252/embj.201899672.
Extension of Rapid Buffering Approximation to Ca Buffers with Two Binding Sites.
Matveev V
Biophys J. 2018; 114(5):1204-1215.
PMID: 29539405
PMC: 5883566.
DOI: 10.1016/j.bpj.2018.01.019.
Padé Approximation of a Stationary Single-Channel Ca Nanodomain.
Matveev V
Biophys J. 2016; 111(9):2062-2074.
PMID: 27806286
PMC: 5103006.
DOI: 10.1016/j.bpj.2016.09.019.
Single calcium channel domain gating of synaptic vesicle fusion at fast synapses; analysis by graphic modeling.
Stanley E
Channels (Austin). 2015; 9(5):324-33.
PMID: 26457441
PMC: 4826128.
DOI: 10.1080/19336950.2015.1098793.
Presynaptic nanodomains: a tale of two synapses.
Wang L, Augustine G
Front Cell Neurosci. 2015; 8:455.
PMID: 25674049
PMC: 4306312.
DOI: 10.3389/fncel.2014.00455.
Imaging large cohorts of single ion channels and their activity.
Hiersemenzel K, Brown E, Duncan R
Front Endocrinol (Lausanne). 2013; 4:114.
PMID: 24027557
PMC: 3762133.
DOI: 10.3389/fendo.2013.00114.
Calcium cooperativity of exocytosis as a measure of Ca²+ channel domain overlap.
Matveev V, Bertram R, Sherman A
Brain Res. 2011; 1398:126-38.
PMID: 21621748
PMC: 3181473.
DOI: 10.1016/j.brainres.2011.05.011.
Bassoon and the synaptic ribbon organize Ca²+ channels and vesicles to add release sites and promote refilling.
Frank T, Rutherford M, Strenzke N, Neef A, Pangrsic T, Khimich D
Neuron. 2010; 68(4):724-38.
PMID: 21092861
PMC: 3005353.
DOI: 10.1016/j.neuron.2010.10.027.
Ca2+ current versus Ca2+ channel cooperativity of exocytosis.
Matveev V, Bertram R, Sherman A
J Neurosci. 2009; 29(39):12196-209.
PMID: 19793978
PMC: 2784595.
DOI: 10.1523/JNEUROSCI.0263-09.2009.
Otoferlin is critical for a highly sensitive and linear calcium-dependent exocytosis at vestibular hair cell ribbon synapses.
Dulon D, Safieddine S, Jones S, Petit C
J Neurosci. 2009; 29(34):10474-87.
PMID: 19710301
PMC: 2966717.
DOI: 10.1523/JNEUROSCI.1009-09.2009.
Evidence that exocytosis is driven by calcium entry through multiple calcium channels in goldfish retinal bipolar cells.
Coggins M, Zenisek D
J Neurophysiol. 2009; 101(5):2601-19.
PMID: 19244355
PMC: 2893960.
DOI: 10.1152/jn.90881.2008.
Approximate analytical time-dependent solutions to describe large-amplitude local calcium transients in the presence of buffers.
Mironova L, Mironov S
Biophys J. 2007; 94(2):349-58.
PMID: 17872951
PMC: 2157246.
DOI: 10.1529/biophysj.107.113340.
Mechanisms underlying the temporal precision of sound coding at the inner hair cell ribbon synapse.
Moser T, Neef A, Khimich D
J Physiol. 2006; 576(Pt 1):55-62.
PMID: 16901948
PMC: 1995636.
DOI: 10.1113/jphysiol.2006.114835.
Few CaV1.3 channels regulate the exocytosis of a synaptic vesicle at the hair cell ribbon synapse.
Brandt A, Khimich D, Moser T
J Neurosci. 2005; 25(50):11577-85.
PMID: 16354915
PMC: 6726013.
DOI: 10.1523/JNEUROSCI.3411-05.2005.