» Articles » PMID: 24193731

Assessing the Toxic Threat of Selenium to Fish and Aquatic Birds

Overview
Publisher Springer
Date 2013 Nov 7
PMID 24193731
Citations 6
Authors
Affiliations
Soon will be listed here.
Abstract

A procedure is given for evaluating the toxic threat of selenium to fish and wildlife. Toxic threat is expressed as hazard, and is based on the potential for food-chain bioaccumulation and reproductive impairment in fish and aquatic birds, which are the most sensitive biological responses for estimating ecosystem-level impacts of selenium contamination. Five degrees of hazard are possible depending on the expected environmental concentrations of selenium, exposure of fish and aquatic birds to toxic concentrations, and resultant potential for reproductive impairment. The degree of hazard is given a numerical score: 5 = high hazard, 4 = moderate hazard, 3 = low hazard, 2 = minimal hazard, and 1 = no identifiable hazard. A separate hazard score is given to each of five ecosystem components; water, sediments, benthic macroinvertebrates, fish eggs, and aquatic bird eggs. A final hazard characterization is determined by adding individual scores and comparing the total to the following evaluation criteria: 5 = no hazard, 6-8 = minimal hazard, 9-11 = low hazard, 12-15 = moderate hazard, 16-25 = high hazard. An example is given to illustrate how the procedure is applied to selenium data from a typical contaminant monitoring program.

Citing Articles

Longer-Term Adverse Effects of Selenate Exposures on Hematological and Serum Biochemical Variables in Air-Breathing Fish Channa punctata (Bloch, 1973) and Non-air Breathing Fish Ctenopharyngodon Idella (Cuvier, 1844): an Integrated Biomarker....

Saha S, Dhara K, Pal P, Saha N, Faggio C, Chukwuka A Biol Trace Elem Res. 2022; 201(7):3497-3512.

PMID: 36251148 DOI: 10.1007/s12011-022-03449-3.


Integrating physiological data with the conservation and management of fishes: a meta-analytical review using the threatened green sturgeon ().

Rodgers E, Poletto J, Gomez Isaza D, Van Eenennaam J, Connon R, Todgham A Conserv Physiol. 2019; 7(1):coz035.

PMID: 31281658 PMC: 6601218. DOI: 10.1093/conphys/coz035.


Trace element concentrations in feathers of seven petrels (Pterodroma spp.).

Philpot S, Lavers J, Nugegoda D, Gilmour M, Hutton I, Bond A Environ Sci Pollut Res Int. 2019; 26(10):9640-9648.

PMID: 30729429 DOI: 10.1007/s11356-019-04406-9.


Developmental responses of a terrestrial insect detritivore, Megaselia scalaris (Loew) to four selenium species.

Jensen P, Rivas M, Trumble J Ecotoxicology. 2005; 14(3):313-22.

PMID: 15943107 DOI: 10.1007/s10646-003-6368-x.


Biotransfer of selenium: effects on an insect predator, Podisus maculiventris.

Vickerman D, Trumble J Ecotoxicology. 2003; 12(6):497-504.

PMID: 14680330 DOI: 10.1023/b:ectx.0000003036.81351.31.


References
1.
Brumbaugh W, Walther M . Determination of arsenic and selenium in whole fish by continuous-flow hydride generation atomic absorption spectrophotometry. J Assoc Off Anal Chem. 1989; 72(3):484-6. View

2.
Lemly A . Guidelines for evaluating selenium data from aquatic monitoring and assessment studies. Environ Monit Assess. 2013; 28(1):83-100. DOI: 10.1007/BF00547213. View

3.
Gillespie R, Baumann P, Singley C . Dietary exposure of bluegills (Lepomis macrochirus) to (75) Se: uptake and distribution in organs and tissues. Bull Environ Contam Toxicol. 1988; 40(5):771-8. DOI: 10.1007/BF01697529. View

4.
Lemly A . Toxicology of selenium in a freshwater reservoir: implications for environmental hazard evaluation and safety. Ecotoxicol Environ Saf. 1985; 10(3):314-38. DOI: 10.1016/0147-6513(85)90079-x. View

5.
Sorensen E, Cumbie P, Bauer T, Bell J, Harlan C . Histopathological, hematological, condition-factor, and organ weight changes associated with selenium accumulation in fish from Belews Lake, North Carolina. Arch Environ Contam Toxicol. 1984; 13(2):153-62. DOI: 10.1007/BF01055872. View