» Articles » PMID: 24179865

[(123)I]-IBVM SPECT Imaging of Cholinergic Systems in Multiple System Atrophy: A Specific Alteration of the Ponto-thalamic Cholinergic Pathways (Ch5-Ch6)

Overview
Journal Neuroimage Clin
Publisher Elsevier
Specialties Neurology
Radiology
Date 2013 Nov 2
PMID 24179865
Citations 7
Authors
Affiliations
Soon will be listed here.
Abstract

Unlabelled: We evaluated in vivo the integrity of brain cholinergic pathways in Multiple System Atrophy (MSA) and the relationship between cholinergic dysfunction and motor disturbances, by measuring the vesicular acetylcholine transporter (VAChT) expression using Single Photon Emission Computed Tomography (SPECT) and [(123)I]-iodobenzovesamicol ([(123)I]-IBVM).

Methods: Nine patients with probable MSA and 12 healthy volunteers underwent a dynamic [(123)I]-IBVM SPECT-CT scan and a magnetic resonance imaging (MRI) scan. All patients were examined with the Unified MSA Rating Scale (UMSARS; subscale I = activities of daily living (ADL), II = motor and IV = disability). CT and MRI images were used to register the dynamic SPECT image to the Montreal Neurological Institute brain template, which includes the regions of interest (ROI) of striatum and Ch1 (medial septum nucleus-hippocampus), Ch4 (nucleus basalis of Meynert-cortex) and Ch5-Ch6 (pedunculopontine and laterodorsal tegmental nuclei-thalamus) cholinergic pathways. For each ROI, pharmacokinetic modeling of regional time activity curves led to the calculation of [(123)I]-IBVM to VAChT binding potential (BPND) value, proportional to VAChT expression.

Results: When compared to controls, BPND values for MSA in Ch5-Ch6 were significantly decreased in both the pedunculopontine-laterodorsal nuclei and the thalamus (p = 0.004 and p = 0.006, respectively). Additionally, thalamus BPND values were correlated with UMSARS ADL (p = 0.006), motor (p = 0.002) and disability (p = 0.02) sub-scores. UMSARS motor subscale items 13 (postural instability) and 14 (gait) were also correlated with thalamus BPND values (p = 0.04).

Conclusion: Ch5-Ch6 are the most affected cholinergic pathways in MSA at both cell bodies and thalamic cholinergic terminals. These results underscore the relevant role of [(123)I]-IBVM SPECT for improving our understanding of the pathophysiology in MSA.

Citing Articles

Innovative Molecular Imaging for Clinical Research, Therapeutic Stratification, and Nosography in Neuroscience.

Beaurain M, Salabert A, Ribeiro M, Arlicot N, Damier P, Le Jeune F Front Med (Lausanne). 2019; 6:268.

PMID: 31828073 PMC: 6890558. DOI: 10.3389/fmed.2019.00268.


Radiosynthesis and evaluation of a fluorine-18 labeled radioligand targeting vesicular acetylcholine transporter.

Yue X, Luo Z, Liu H, Kaneshige K, Parsons S, Perlmutter J Bioorg Med Chem Lett. 2018; 28(21):3425-3430.

PMID: 30274694 PMC: 6221475. DOI: 10.1016/j.bmcl.2018.09.030.


Kinetic modeling of [ F]VAT, a novel radioligand for positron emission tomography imaging vesicular acetylcholine transporter in non-human primate brain.

Jin H, Yue X, Liu H, Han J, Flores H, Su Y J Neurochem. 2018; 144(6):791-804.

PMID: 29315563 PMC: 5897141. DOI: 10.1111/jnc.14291.


Synthesis and biological characterization of a promising F-18 PET tracer for vesicular acetylcholine transporter.

Tu Z, Zhang X, Jin H, Yue X, Padakanti P, Yu L Bioorg Med Chem. 2015; 23(15):4699-4709.

PMID: 26138195 PMC: 4524497. DOI: 10.1016/j.bmc.2015.05.058.


Comparative quantitative study of 'signature' pathological lesions in the hippocampus and adjacent gyri of 12 neurodegenerative disorders.

Armstrong R, Cairns N J Neural Transm (Vienna). 2015; 122(10):1355-67.

PMID: 25929331 DOI: 10.1007/s00702-015-1402-8.


References
1.
Schmeichel A, Buchhalter L, Low P, Parisi J, Boeve B, Sandroni P . Mesopontine cholinergic neuron involvement in Lewy body dementia and multiple system atrophy. Neurology. 2008; 70(5):368-73. DOI: 10.1212/01.wnl.0000298691.71637.96. View

2.
Watanabe H, Saito Y, Terao S, Ando T, Kachi T, Mukai E . Progression and prognosis in multiple system atrophy: an analysis of 230 Japanese patients. Brain. 2002; 125(Pt 5):1070-83. DOI: 10.1093/brain/awf117. View

3.
Meltzer C, Kinahan P, Greer P, Nichols T, Comtat C, Cantwell M . Comparative evaluation of MR-based partial-volume correction schemes for PET. J Nucl Med. 2000; 40(12):2053-65. View

4.
Tzourio-Mazoyer N, Landeau B, Papathanassiou D, Crivello F, Etard O, Delcroix N . Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain. Neuroimage. 2002; 15(1):273-89. DOI: 10.1006/nimg.2001.0978. View

5.
Erickson J, Varoqui H, Schafer M, Modi W, Diebler M, Weihe E . Functional identification of a vesicular acetylcholine transporter and its expression from a "cholinergic" gene locus. J Biol Chem. 1994; 269(35):21929-32. View