» Articles » PMID: 24173072

RAPD Linkage Mapping in a Longleaf Pine X Slash Pine F1 Family

Overview
Publisher Springer
Specialty Genetics
Date 2013 Nov 1
PMID 24173072
Citations 9
Authors
Affiliations
Soon will be listed here.
Abstract

Random amplified polymorphic DNAs (RAPDs) were used to construct linkage maps of the parent of a longleaf pine (Pinus palustris Mill.) slash pine (Pinus elliottii Englm.) F1 family. A total of 247 segregating loci [233 (1∶1), 14 (3∶1)] and 87 polymorphic (between parents), but non-segregating, loci were identified. The 233 loci segregating 1∶1 (testcross configuration) were used to construct parent-specific linkage maps, 132 for the longleaf-pine parent and 101 for the slash-pine parent. The resulting linkage maps consisted of 122 marker loci in 18 groups (three or more loci) and three pairs (1367.5 cM) for longleaf pine, and 91 marker loci in 13 groups and six pairs for slash pine (952.9 cM). Genome size estimates based on two-point linkage data ranged from 2348 to 2392 cM for longleaf pine, and from 2292 to 2372 cM for slash pine. Linkage of 3∶1 loci to testcross loci in each of the parental maps was used to infer further linkages within maps, as well as potentially homologous counterparts between maps. Three of the longleaf-pine linkage groups appear to be potentially homologous counterparts to four different slash-pine linkage groups. The number of heterozygous loci (previously testcross in parents) per F1 individual, ranged from 96 to 130. With the 87 polymorphic, but non-segregating, loci that should also be heterozygous in the F1 progeny, a maximum of 183-217 heterozygous loci could be available for mapping early height growth (EHG) loci and for applying genomic selection in backcross populations.

Citing Articles

A Picea abies linkage map based on SNP markers identifies QTLs for four aspects of resistance to Heterobasidion parviporum infection.

Lind M, Kallman T, Chen J, Ma X, Bousquet J, Morgante M PLoS One. 2014; 9(7):e101049.

PMID: 25036209 PMC: 4103950. DOI: 10.1371/journal.pone.0101049.


Theobroma cacao L.: a genetic linkage map and quantitative trait loci analysis.

Crouzillat D, Lerceteau E, Petiard V, Morera J, Rodriguez H, Walker D Theor Appl Genet. 2013; 93(1-2):205-14.

PMID: 24162219 DOI: 10.1007/BF00225747.


Annotated genetic linkage maps of Pinus pinaster Ait. from a Central Spain population using microsatellite and gene based markers.

De Miguel M, de Maria N, Guevara M, Diaz L, Saez-Laguna E, Sanchez-Gomez D BMC Genomics. 2012; 13:527.

PMID: 23036012 PMC: 3534022. DOI: 10.1186/1471-2164-13-527.


Quantitative trait loci and candidate gene mapping of aluminum tolerance in diploid alfalfa.

Narasimhamoorthy B, Bouton J, Olsen K, Sledge M Theor Appl Genet. 2007; 114(5):901-13.

PMID: 17219204 PMC: 1805042. DOI: 10.1007/s00122-006-0488-7.


A composite linkage map from two crosses for the species complex Picea mariana x Picea rubens and analysis of synteny with other Pinaceae.

Pelgas B, Bousquet J, Beauseigle S, Isabel N Theor Appl Genet. 2005; 111(8):1466-88.

PMID: 16215729 DOI: 10.1007/s00122-005-0068-2.


References
1.
Wagner D, Furnier G, Williams S, Dancik B, Allard R . Chloroplast DNA polymorphisms in lodgepole and jack pines and their hybrids. Proc Natl Acad Sci U S A. 1987; 84(7):2097-100. PMC: 304592. DOI: 10.1073/pnas.84.7.2097. View

2.
Hemmat M, Weeden N, Manganaris A, Lawson D . Molecular marker linkage map for apple. J Hered. 1994; 85(1):4-11. View

3.
Helentjaris T, Slocum M, Wright S, Schaefer A, Nienhuis J . Construction of genetic linkage maps in maize and tomato using restriction fragment length polymorphisms. Theor Appl Genet. 2013; 72(6):761-9. DOI: 10.1007/BF00266542. View

4.
Nelson C, Nance W, Doudrick R . A partial genetic linkage map of slash pine (Pinus elliottii Engelm. var. elliottii) based on random amplified polymorphic DNAs. Theor Appl Genet. 2013; 87(1-2):145-51. DOI: 10.1007/BF00223758. View

5.
Tulsieram L, Glaubitz J, Kiss G, Carlson J . Single tree genetic linkage mapping in conifers using haploid DNA from megagametophytes. Biotechnology (N Y). 1992; 10(6):686-90. DOI: 10.1038/nbt0692-686. View